Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nat Rev Mol Cell Biol ; 16(12): 753-61, 2015 12.
Artículo en Inglés | MEDLINE | ID: mdl-26507169

RESUMEN

Lipids tailor membrane identities and function as molecular hubs in all cellular processes. However, the ways in which lipids modulate protein function and structure are poorly understood and still require systematic investigation. In this Innovation article, we summarize pioneering technologies, including lipid-overlay assays, lipid pull-down assays, affinity-purification lipidomics and the liposome microarray-based assay (LiMA), that will enable protein-lipid interactions to be deciphered on a systems level. We discuss how these technologies can be applied to the charting of system-wide networks and to the development of new pharmaceutical strategies.


Asunto(s)
Membrana Celular/metabolismo , Lípidos/química , Lipoproteínas/química , Liposomas/química , Análisis por Micromatrices/métodos , Proteínas/química , Animales , Humanos , Metabolismo de los Lípidos/fisiología , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
2.
Nat Chem Biol ; 20(2): 142-150, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37460675

RESUMEN

G-protein-coupled receptors (GPCRs) mediate many critical physiological processes. Their spatial organization in plasma membrane (PM) domains is believed to encode signaling specificity and efficiency. However, the existence of domains and, crucially, the mechanism of formation of such putative domains remain elusive. Here, live-cell imaging (corrected for topography-induced imaging artifacts) conclusively established the existence of PM domains for GPCRs. Paradoxically, energetic coupling to extremely shallow PM curvature (<1 µm-1) emerged as the dominant, necessary and sufficient molecular mechanism of GPCR spatiotemporal organization. Experiments with different GPCRs, H-Ras, Piezo1 and epidermal growth factor receptor, suggest that the mechanism is general, yet protein specific, and can be regulated by ligands. These findings delineate a new spatiomechanical molecular mechanism that can transduce to domain-based signaling any mechanical or chemical stimulus that affects the morphology of the PM and suggest innovative therapeutic strategies targeting cellular shape.


Asunto(s)
Receptores Acoplados a Proteínas G , Transducción de Señal , Membrana Celular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
3.
Soft Matter ; 15(48): 9829-9839, 2019 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-31728468

RESUMEN

Membrane curvature has recently been recognized as an active regulator of cellular function, with several protein families identified as sensors and generators of membrane curvature. Amongst them, the inverse Bin/Amphiphysin/Rvs (I-BAR) domain family has been implicated in the sensing and generation of membrane structures with negative membrane curvature e.g. filopodia or dendritic spines. However, to date, quantitative biophysical investigations of I-BAR domains have mostly taken place in reconstitution. Here, we use fluorescence microscopy to quantitatively investigate membrane curvature sensing and generation by I-BARs in filopodia of living cells. As a model system, we selected two prototypic members of the I-BAR family, the insulin receptor substrate p53 and missing-in-metastasis. Our data demonstrated how I-BARs sense negative membrane curvature in the complex environment of live cells by revealing a dependence on membrane curvature for both their binding affinity to membranes and their saturation density. The non-monotonic dependence of protein sorting with negative membrane curvature allowed us to apply previously developed thermodynamic models to provide estimates of the effective intrinsic curvature and bending rigidity of the two I-BARs bound at the plasma membrane. Our results agree with studies performed on the insulin receptor substrate p53 in reconstitution. To quantitate membrane curvature generation by I-BARs we measured how their overexpression reduces the peak and the width of the size distribution of filopodia, resulting in filopodia populations with smaller and more uniform diameters. Our findings provide a quantitative biophysical insight in the ability of I-BARs to sense and generate negative membrane curvature in the crowded environment of living cells.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Membrana Celular/fisiología , Proteínas de Microfilamentos/fisiología , Modelos Biológicos , Proteínas de Neoplasias/fisiología , Proteínas del Tejido Nervioso/fisiología , Seudópodos/fisiología , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/genética , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Células PC12 , Dominios Proteicos , Ratas
4.
Nat Methods ; 11(1): 47-50, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24270602

RESUMEN

Lipids have a role in virtually all biological processes, acting as structural elements, scaffolds and signaling molecules, but they are still largely under-represented in known biological networks. Here we describe a liposome microarray-based assay (LiMA), a method that measures protein recruitment to membranes in a quantitative, automated, multiplexed and high-throughput manner.


Asunto(s)
Lípidos/química , Liposomas/química , Análisis por Micromatrices , Automatización , Escherichia coli/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Fluorescente/métodos , Mutación , Unión Proteica , Proteínas/química , Proteínas Recombinantes/química , Saccharomyces cerevisiae/genética , Sefarosa/química , Transducción de Señal , Biología de Sistemas
5.
Nucleic Acids Res ; 42(22): 13525-33, 2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25398899

RESUMEN

The thermophilic fungus Chaetomium thermophilum holds great promise for structural biology. To increase the efficiency of its biochemical and structural characterization and to explore its thermophilic properties beyond those of individual proteins, we obtained transcriptomics and proteomics data, and integrated them with computational annotation methods and a multitude of biochemical experiments conducted by the structural biology community. We considerably improved the genome annotation of Chaetomium thermophilum and characterized the transcripts and expression of thousands of genes. We furthermore show that the composition and structure of the expressed proteome of Chaetomium thermophilum is similar to its mesophilic relatives. Data were deposited in a publicly available repository and provide a rich source to the structural biology community.


Asunto(s)
Chaetomium/genética , Genoma Fúngico , Anotación de Secuencia Molecular , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Intrones , Proteoma/metabolismo , Seudogenes , Transcriptoma
6.
Mol Syst Biol ; 8: 571, 2012 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-22373819

RESUMEN

Protein post-translational modifications (PTMs) represent important regulatory states that when combined have been hypothesized to act as molecular codes and to generate a functional diversity beyond genome and transcriptome. We systematically investigate the interplay of protein phosphorylation with other post-transcriptional regulatory mechanisms in the genome-reduced bacterium Mycoplasma pneumoniae. Systematic perturbations by deletion of its only two protein kinases and its unique protein phosphatase identified not only the protein-specific effect on the phosphorylation network, but also a modulation of proteome abundance and lysine acetylation patterns, mostly in the absence of transcriptional changes. Reciprocally, deletion of the two putative N-acetyltransferases affects protein phosphorylation, confirming cross-talk between the two PTMs. The measured M. pneumoniae phosphoproteome and lysine acetylome revealed that both PTMs are very common, that (as in Eukaryotes) they often co-occur within the same protein and that they are frequently observed at interaction interfaces and in multifunctional proteins. The results imply previously unreported hidden layers of post-transcriptional regulation intertwining phosphorylation with lysine acetylation and other mechanisms that define the functional state of a cell.


Asunto(s)
Acetilesterasa/metabolismo , Tamaño del Genoma/genética , Lisina/metabolismo , Redes y Vías Metabólicas/genética , Neumonía por Mycoplasma/genética , Proteínas Quinasas/metabolismo , Acetilación , Dominio Catalítico/genética , Evolución Molecular , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/fisiología , Genoma Bacteriano/genética , Redes y Vías Metabólicas/fisiología , Modelos Biológicos , Organismos Modificados Genéticamente , Fosforilación/fisiología , Neumonía por Mycoplasma/metabolismo , Procesamiento Proteico-Postraduccional/genética , Proteoma/genética , Proteoma/metabolismo
7.
Sci Rep ; 12(1): 13486, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35931724

RESUMEN

In the course of cancer progression tumor cells undergo morphological changes that lead to increased motility and invasiveness thus promoting formation of metastases. This process called epithelial to mesenchymal transition (EMT) is triggered by transforming growth factor (TGFß) but for gaining the full invasive potential an interplay between signaling of TGFß and Ras GTPases is required. Ras proteins possess a lipidated domain that mediates Ras association with the plasma membrane, which is essential for Ras biological functions. Type and number of the lipid anchors are the main difference among three Ras variants-H-ras, N-ras and K-ras. The lipid anchors determine membrane partitioning of lipidated proteins into membrane areas of specific physico-chemical properties and curvature. In this study, we investigated the effect of TGFß treatment on the subcellular localization of H-ras and K-ras. We show that TGFß increases positive plasma membrane curvature, which is subsequently sensed by H-ras, leading to its elevated plasma membrane localization and activation. This observation suggests the existence of a novel positive feedback loop whereby the increased level of plasma membrane curvature during TGFß induced EMT attracts more Ras molecules to the plasma membrane resulting in increased Ras activity which in turn promotes further EMT and thus ultimately enables the acquisition of full invasive potential.


Asunto(s)
Transición Epitelial-Mesenquimal , Factor de Crecimiento Transformador beta , Lípidos , Proteínas Oncogénicas/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Factores de Crecimiento Transformadores/metabolismo , Proteínas ras/metabolismo
8.
Front Pharmacol ; 13: 893655, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35559262

RESUMEN

In the last decade, zebrafish have accompanied the mouse as a robust animal model for cancer research. The possibility of screening small-molecule inhibitors in a large number of zebrafish embryos makes this model particularly valuable. However, the dynamic visualization of fluorescently labeled tumor cells needs to be complemented by a more sensitive, easy, and rapid mode for evaluating tumor growth in vivo to enable high-throughput screening of clinically relevant drugs. In this study we proposed and validated a pre-clinical screening model for drug discovery by utilizing bioluminescence as our readout for the determination of transplanted cancer cell growth and inhibition in zebrafish embryos. For this purpose, we used NanoLuc luciferase, which ensured rapid cancer cell growth quantification in vivo with high sensitivity and low background when compared to conventional fluorescence measurements. This allowed us large-scale evaluation of in vivo drug responses of 180 kinase inhibitors in zebrafish. Our bioluminescent screening platform could facilitate identification of new small-molecules for targeted cancer therapy as well as for drug repurposing.

9.
Nat Protoc ; 11(6): 1021-38, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27149326

RESUMEN

Lipids organize the activity of the cell's proteome through a complex network of interactions. The assembly of comprehensive atlases embracing all protein-lipid interactions is an important challenge that requires innovative methods. We recently developed a liposome-microarray-based assay (LiMA) that integrates liposomes, microfluidics and fluorescence microscopy and which is capable of measuring protein recruitment to membranes in a quantitative and high-throughput manner. Compared with previous assays that are labor-intensive and difficult to scale up, LiMA improves the protein-lipid interaction assay throughput by at least three orders of magnitude. Here we provide a step-by-step LiMA protocol that includes the following: (i) the serial and generic production of the liposome microarray; (ii) its integration into a microfluidic format; (iii) the measurement of fluorescently labeled protein (either purified proteins or from cell lysate) recruitment to liposomal membranes using high-throughput microscopy; (iv) automated image analysis pipelines to quantify protein-lipid interactions; and (v) data quality analysis. In addition, we discuss the experimental design, including the relevant quality controls. Overall, the protocol-including device preparation, assay and data analysis-takes 6-8 d. This protocol paves the way for protein-lipid interaction screens to be performed on the proteome and lipidome scales.


Asunto(s)
Liposomas/metabolismo , Análisis por Micromatrices/métodos , Proteínas/metabolismo , Línea Celular , Humanos , Procesamiento de Imagen Asistido por Computador , Dispositivos Laboratorio en un Chip , Análisis por Micromatrices/instrumentación , Unión Proteica , Control de Calidad
10.
Cell Rep ; 12(9): 1519-30, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26299969

RESUMEN

Many cellular processes involve the recruitment of proteins to specific membranes, which are decorated with distinctive lipids that act as docking sites. The phosphoinositides form signaling hubs, and we examine mechanisms underlying recruitment. We applied a physiological, quantitative, liposome microarray-based assay to measure the membrane-binding properties of 91 pleckstrin homology (PH) domains, the most common phosphoinositide-binding target. 10,514 experiments quantified the role of phosphoinositides in membrane recruitment. For most domains examined, the observed binding specificity implied cooperativity with additional signaling lipids. Analyses of PH domains with similar lipid-binding profiles identified a conserved motif, mutations in which-including some found in human cancers-induced discrete changes in binding affinities in vitro and protein mislocalization in vivo. The data set reveals cooperativity as a key mechanism for membrane recruitment and, by enabling the interpretation of disease-associated mutations, suggests avenues for the design of small molecules targeting PH domains.


Asunto(s)
Membrana Celular/metabolismo , Proteínas Fúngicas/metabolismo , Fosfatidilinositoles/metabolismo , Chaetomium/metabolismo , Proteínas Fúngicas/química , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismo
11.
Structure ; 23(1): 149-160, 2015 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-25543256

RESUMEN

The small, highly conserved Kti11 alias Dph3 protein encoded by the Kluyveromyces lactis killer toxin insensitive gene KTI11/DPH3 is involved in the diphthamide modification of eukaryotic elongation factor 2 and, together with Kti13, in Elongator-dependent tRNA wobble base modifications, thereby affecting the speed and accuracy of protein biosynthesis through two distinct mechanisms. We have solved the crystal structures of Saccharomyces cerevisiae Kti13 and the Kti11/Kti13 heterodimer at 2.4 and 2.9 Å resolution, respectively, and validated interacting residues through mutational analysis in vitro and in vivo. We show that metal coordination by Kti11 and its heterodimerization with Kti13 are essential for both translational control mechanisms. Our structural and functional analyses identify Kti13 as an additional component of the diphthamide modification pathway and provide insight into the molecular mechanisms that allow the Kti11/Kti13 heterodimer to coregulate two consecutive steps in ribosomal protein synthesis.


Asunto(s)
Factor 2 de Elongación Peptídica/metabolismo , ARN de Transferencia/metabolismo , Proteínas Represoras/química , Proteínas Represoras/fisiología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/fisiología , Modelos Moleculares , Organismos Modificados Genéticamente , Factor 2 de Elongación Peptídica/química , Biosíntesis de Proteínas/genética , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Procesamiento Postranscripcional del ARN/genética , ARN de Transferencia/química , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Mol Cell Biol ; 31(22): 4550-62, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21930792

RESUMEN

Formation of the immunological synapse between an antigen-presenting cell (APC) and a T cell leads to signal generation in both cells involved. In T cells, the lipid raft-associated transmembrane adaptor protein LAT plays a central role. Its phosphorylation is a crucial step in signal propagation, including the calcium response and mitogen-activated protein kinase activation, and largely depends on its association with the SLP76 adaptor protein. Here we report the discovery of a new palmitoylated transmembrane adaptor protein, termed SCIMP. SCIMP is expressed in B cells and other professional APCs and is localized in the immunological synapse due to its association with tetraspanin-enriched microdomains. In B cells, it is constitutively associated with Lyn kinase and becomes tyrosine phosphorylated after major histocompatibility complex type II (MHC-II) stimulation. When phosphorylated, SCIMP binds to the SLP65 adaptor protein and also to the inhibitory kinase Csk. While the association with SLP65 initiates the downstream signaling cascades, Csk binding functions as a negative regulatory loop. The results suggest that SCIMP is involved in signal transduction after MHC-II stimulation and therefore serves as a regulator of antigen presentation and other APC functions.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Células Presentadoras de Antígenos/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Proteínas de la Membrana/metabolismo , Fosfoproteínas/metabolismo , Linfocitos T/inmunología , Proteínas Adaptadoras Transductoras de Señales/química , Secuencia de Aminoácidos , Presentación de Antígeno , Linfocitos B/inmunología , Linfocitos B/metabolismo , Proteína Tirosina Quinasa CSK , Células HEK293 , Antígenos de Histocompatibilidad Clase II/metabolismo , Humanos , Sinapsis Inmunológicas/química , Activación de Linfocitos , Microdominios de Membrana/química , Microdominios de Membrana/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Datos de Secuencia Molecular , Proteínas Tirosina Quinasas/química , Proteínas Tirosina Quinasas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño , Transducción de Señal , Dominios Homologos src , Familia-src Quinasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA