Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 137(19): 2694-2698, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33544829

RESUMEN

Immune-mediated thrombotic thrombocytopenic purpura (iTTP) is an autoimmune disorder caused by the development of autoantibodies targeting different domains of ADAMTS13. Profiling studies have shown that residues R568, F592, R660, Y661, and Y665 within exosite-3 of the spacer domain provide an immunodominant region of ADAMTS13 for pathogenic autoantibodies that develop in patients with iTTP. Modification of these 5 core residues with the goal of reducing autoantibody binding revealed a significant tradeoff between autoantibody resistance and proteolytic activity. Here, we employed structural bioinformatics to identify a larger epitope landscape on the ADAMTS13 spacer domain. Models of spacer-antibody complexes predicted that residues R568, L591, F592, K608, M609, R636, L637, R639, R660, Y661, Y665, and L668 contribute to an expanded epitope within the spacer domain. Based on bioinformatics-guided predictions, we designed a panel of N-glycan insertions in this expanded epitope to reduce the binding of spacer domain autoantibodies. One N-glycan variant (NGLY3-ADAMTS13, containing a K608N substitution) showed strongly reduced reactivity with TTP patient sera (28%) as compared with WT-ADAMTS13 (100%). Insertion of an N-glycan at amino acid position 608 did not interfere with processing of von Willebrand factor, positioning the resulting NGLY3-ADAMTS13 variant as a potential novel therapeutic option for treatment of iTTP.


Asunto(s)
Proteína ADAMTS13/inmunología , Complejo Antígeno-Anticuerpo/química , Reacciones Antígeno-Anticuerpo , Autoanticuerpos/inmunología , Autoantígenos/inmunología , Polisacáridos/inmunología , Púrpura Trombocitopénica Trombótica/inmunología , Proteína ADAMTS13/química , Proteína ADAMTS13/metabolismo , Sustitución de Aminoácidos , Aminoácidos , Anticuerpos Monoclonales/inmunología , Complejo Antígeno-Anticuerpo/inmunología , Autoanticuerpos/metabolismo , Autoantígenos/química , Autoantígenos/metabolismo , Epítopos/inmunología , Epítopos/metabolismo , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios Proteicos , Factor de von Willebrand/metabolismo
2.
Platelets ; 34(1): 2129604, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36185007

RESUMEN

Immune-mediated platelet refractoriness (PR) remains a significant problem in the setting of platelet transfusion and is predominantly caused by the presence of alloantibodies directed against class I human leukocyte antigens (HLA). Opsonization of donor platelets with these alloantibodies can result in rapid clearance after transfusion via multiple mechanisms, including antibody dependent cellular phagocytosis (ADCP). Interestingly, not all alloimmunized patients develop PR to unmatched platelet transfusions, suggesting variation in HLA-specific IgG responses between patients. Previously, we observed that the glycosylation profile of anti-HLA antibodies was highly variable between PR patients, especially with respect to Fc galactosylation, sialylation and fucosylation. In the current study, we investigated the effect of different Fc glycosylation patterns, with known effects on complement deposition and FcγR binding, on phagocytosis of opsonized platelets by monocyte-derived human macrophages. We found that the phagocytosis of antibody- and complement-opsonized platelets, by monocyte derived M1 macrophages, was unaffected by these qualitative IgG-glycan differences.


Asunto(s)
Isoanticuerpos , Transfusión de Plaquetas , Humanos , Plaquetas/metabolismo , Fagocitosis , Macrófagos , Inmunoglobulina G , Proteínas del Sistema Complemento/metabolismo , Antígenos HLA
3.
Am J Respir Crit Care Med ; 205(7): 806-818, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35081007

RESUMEN

Rationale: von Willebrand factor (vWF) mediates platelet adhesion during thrombosis. While chronic thromboembolic pulmonary hypertension (CTEPH) is associated with increased plasma levels of vWF, the role of this protein in CTEPH has remained enigmatic. Objectives: To identify the role of vWF in CTEPH. Methods: CTEPH-specific patient plasma and pulmonary endarterectomy material from patients with CTEPH were used to study the relationship between inflammation, vWF expression, and pulmonary thrombosis. Cell culture findings were validated in human tissue, and proteomics and chromatin immunoprecipitation were used to investigate the underlying mechanism of CTEPH. Measurements and Main Results: vWF is increased in plasma and the pulmonary endothelium of CTEPH patients. In vitro, the increase in vWF gene expression and the higher release of vWF protein upon endothelial activation resulted in elevated platelet adhesion to CTEPH endothelium. Proteomic analysis revealed that nuclear factor (NF)-κB2 was significantly increased in CTEPH. We demonstrate reduced histone tri-methylation and increased histone acetylation of the vWF promoter in CTEPH endothelium, facilitating binding of NF-κB2 to the vWF promoter and driving vWF transcription. Genetic interference of NFκB2 normalized the high vWF RNA expression levels and reversed the prothrombotic phenotype observed in CTEPH-pulmonary artery endothelial cells. Conclusions: Epigenetic regulation of the vWF promoter contributes to the creation of a local environment that favors in situ thrombosis in the pulmonary arteries. It reveals a direct molecular link between inflammatory pathways and platelet adhesion in the pulmonary vascular wall, emphasizing a possible role of in situ thrombosis in the development or progression of CTEPH.


Asunto(s)
Hipertensión Pulmonar , Factor de von Willebrand , Células Endoteliales/metabolismo , Endotelio Vascular , Epigénesis Genética , Humanos , Agregación Plaquetaria , Proteómica , Factor de von Willebrand/análisis , Factor de von Willebrand/genética , Factor de von Willebrand/metabolismo
4.
J Biol Chem ; 297(4): 101132, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34461090

RESUMEN

A disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13) is a multidomain metalloprotease for which until now only a single substrate has been identified. ADAMTS13 cleaves the polymeric force-sensor von Willebrand factor (VWF) that unfolds under shear stress and recruits platelets to sites of vascular injury. Shear force-dependent cleavage at a single Tyr-Met peptide bond in the unfolded VWF A2 domain serves to reduce the size of VWF polymers in circulation. In patients with immune-mediated thrombotic thrombocytopenic purpura (iTTP), a rare life-threatening disease, ADAMTS13 is targeted by autoantibodies that inhibit its activity or promote its clearance. In the absence of ADAMTS13, VWF polymers are not adequately processed, resulting in spontaneous adhesion of blood platelets, which presents as severe, life-threatening microvascular thrombosis. In healthy individuals, ADAMTS13-VWF interactions are guided by controlled conversion of ADAMTS13 from a closed, inactive to an open, active conformation through a series of interdomain contacts that are now beginning to be defined. Recently, it has been shown that ADAMTS13 adopts an open conformation in the acute phase and during subclinical disease in iTTP patients, making open ADAMTS13 a novel biomarker for iTTP. In this review, we summarize our current knowledge on ADAMTS13 conformation and speculate on potential triggers inducing conformational changes of ADAMTS13 and how these relate to the pathogenesis of iTTP.


Asunto(s)
Proteína ADAMTS13/inmunología , Autoanticuerpos/inmunología , Púrpura Trombocitopénica Idiopática/inmunología , Factor de von Willebrand/inmunología , Proteína ADAMTS13/sangre , Animales , Autoanticuerpos/sangre , Biomarcadores/sangre , Humanos , Púrpura Trombocitopénica Idiopática/sangre , Factor de von Willebrand/metabolismo
5.
Br J Haematol ; 197(2): 156-170, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35146746

RESUMEN

The 100th anniversary of the first description of Thrombotic Thrombocytopenic Purpura (TTP) as a disease by Dr. Eli Moschcowitz approaches. For many decades, TTP remained mostly a mysterious fatal condition, where diagnosis was often post-mortem. Initially a pentad of symptoms was identified, a pattern that later revealed to be fallible. Sporadic observations led to empiric interventions that allowed for the first impactful breakthrough in TTP treatment, almost 70 years after its first description: the introduction of plasma exchange and infusions as treatments. The main body of knowledge within the field was gathered in the latest three decades: patient registries were set and proved crucial for advancements; the general mechanisms of disease have been described; the diagnosis was refined; new treatments and biomarkers with improvements on prognosis and management were introduced. Further changes and improvements are expected in the upcoming decades. In this review, we provide a brief historic overview of TTP, as an illustrative example of the success of translational medicine enabling to rapidly shift from a management largely based on empiricism to targeted therapies and personalized medicine, for the benefit of patients. Current management options and present and future perspectives in this still evolving field are summarized.


Asunto(s)
Púrpura Trombocitopénica Trombótica , Proteína ADAMTS13 , Empirismo , Humanos , Terapia Molecular Dirigida , Intercambio Plasmático , Púrpura Trombocitopénica Trombótica/diagnóstico , Púrpura Trombocitopénica Trombótica/terapia
6.
Br J Haematol ; 197(4): 497-501, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-36165954

RESUMEN

Von Willebrand disease (VWD) is a bleeding disorder caused by quantitative (type 1 or 3) or qualitative (type 2A/2B/2M/2N) defects of circulating von Willebrand factor (VWF). Circulating VWF levels not always fully explain bleeding phenotypes, suggesting a role for alternative factors, like platelets. Here, we investigated platelet factor 4 (PF4) in a large cohort of patients with VWD. PF4 levels were lower in type 2B and current bleeding phenotype was significantly associated with higher PF4 levels, particularly in type 1 VWD. Based on our findings we speculate that platelet degranulation and cargo release may play a role across VWD subtypes.


Asunto(s)
Enfermedades de von Willebrand , Hemorragia/etiología , Humanos , Fenotipo , Factor Plaquetario 4 , Enfermedades de von Willebrand/genética , Factor de von Willebrand/genética
7.
Blood ; 136(3): 353-361, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32356859

RESUMEN

Recently, we showed that ADAMTS13 circulates in an open conformation during the acute phase of immune-mediated thrombotic thrombocytopenic purpura (iTTP). Although the cause of this conformational change remains elusive, ADAMTS13 is primarily closed in iTTP patients in remission with ADAMTS13 activity >50% and undetectable anti-ADAMTS13 autoantibodies, as well as after rituximab treatment, suggesting a role for anti-ADAMTS13 autoantibodies. Therefore, immunoglobulin G from 18 acute iTTP patients was purified and added to closed ADAMTS13 in healthy donor plasma. This resulted in open ADAMTS13 in 14 of 18 (78%) samples, proving that anti-ADAMTS13 autoantibodies can induce an open ADAMTS13 conformation. To further elucidate the conformation of ADAMTS13 in iTTP patients, we studied a novel iTTP patient cohort (n = 197) that also included plasma samples from iTTP patients in remission in whom ADAMTS13 activity was <50%. The open ADAMTS13 conformation was found during acute iTTP, as well as in patients in remission with ADAMTS13 activity <50% and in half of the patients with ADAMTS13 activity >50%, although free anti-ADAMTS13 autoantibodies were not always detected. Thus, open ADAMTS13 is a hallmark of acute iTTP, as well as a novel biomarker that can be used to detect subclinical iTTP in patients in remission. Finally, a long-term follow-up study in 1 iTTP patient showed that the open conformation precedes a substantial drop in ADAMTS13 activity. In conclusion, we have shown that anti-ADAMTS13 autoantibodies from iTTP patients induce an open ADAMTS13 conformation. Most importantly, an open ADAMTS13 conformation is a biomarker for subclinical iTTP and could become an important tool in TTP management.


Asunto(s)
Proteína ADAMTS13/sangre , Autoanticuerpos/sangre , Púrpura Trombocitopénica Idiopática/sangre , Biomarcadores/sangre , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Conformación Proteica , Púrpura Trombocitopénica Idiopática/tratamiento farmacológico , Rituximab/administración & dosificación
8.
Haematologica ; 107(8): 1827-1839, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35081689

RESUMEN

Von Willebrand factor (VWF) is a multimeric hemostatic protein primarily synthesized in endothelial cells. VWF is stored in endothelial storage organelles, the Weibel-Palade bodies (WPB), whose biogenesis strongly depends on VWF anterograde trafficking and Golgi architecture. Elongated WPB morphology is correlated to longer VWF strings with better adhesive properties. We previously identified the SNARE SEC22B, which is involved in anterograde endoplasmic reticulum-to-Golgi transport, as a novel regulator of WPB elongation. To elucidate novel determinants of WPB morphology we explored endothelial SEC22B interaction partners in a mass spectrometry-based approach, identifying the Golgi SNARE Syntaxin 5 (STX5). We established STX5 knockdown in endothelial cells using shRNA-dependent silencing and analyzed WPB and Golgi morphology, using confocal and electron microscopy. STX5-depleted endothelial cells exhibited extensive Golgi fragmentation and decreased WPB length, which was associated with reduced intracellular VWF levels, and impaired stimulated VWF secretion. However, the secretion-incompetent organelles in shSTX5 cells maintained WPB markers such as Angiopoietin 2, P-selectin, Rab27A, and CD63. In brief, we identified SNARE protein STX5 as a novel regulator of WPB biogenesis.


Asunto(s)
Cuerpos de Weibel-Palade , Factor de von Willebrand , Tamaño Corporal , Células Cultivadas , Células Endoteliales/metabolismo , Exocitosis , Humanos , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Cuerpos de Weibel-Palade/metabolismo , Factor de von Willebrand/genética , Factor de von Willebrand/metabolismo
9.
Haematologica ; 107(10): 2432-2444, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35354253

RESUMEN

Approximately 20% of patients receiving multiple platelet transfusions develop platelet alloantibodies, which can be directed against human leukocyte antigens (HLA) and, to a lesser extent, against human platelet antigens (HPA). These antibodies can lead to the rapid clearance of donor platelets, presumably through IgG-Fc receptor (FcγR)-mediated phagocytosis or via complement activation, resulting in platelet refractoriness. Strikingly, not all patients with anti-HLA or -HPA antibodies develop platelet refractoriness upon unmatched platelet transfusions. Previously, we found that IgG Fc glycosylation of anti-HLA antibodies was highly variable between patients with platelet refractoriness, especially with respect to galactosylation and sialylation of the Fc-bound sugar moiety. Here, we produced recombinant glycoengineered anti-HLA and anti- HPA-1a monoclonal antibodies with varying Fc galactosylation and sialylation levels and studied their ability to activate the classical complement pathway. We observed that anti-HLA monoclonal antibodies with different specificities, binding simultaneously to the same HLA-molecules, or anti-HLA in combination with anti-HPA-1a monoclonal antibodies interacted synergistically with C1q, the first component of the classical pathway. Elevated Fc galactosylation and, to a lesser extent, sialylation significantly increased the complement-activating properties of anti-HLA and anti-HPA-1a monoclonal antibodies. We propose that both the breadth of the polyclonal immune response, with recognition of different HLA epitopes and in some cases HPA antigens, and the type of Fc glycosylation can provide an optimal stoichiometry for C1q binding and subsequent complement activation. These factors can shift the effect of a platelet alloimmune response to a clinically relevant response, leading to complement-mediated clearance of donor platelets, as observed in platelet refractoriness.


Asunto(s)
Antígenos de Plaqueta Humana , Trombocitopenia , Anticuerpos Monoclonales/farmacología , Antígenos de Plaqueta Humana/metabolismo , Plaquetas/metabolismo , Complemento C1q , Vía Clásica del Complemento , Proteínas del Sistema Complemento/metabolismo , Epítopos , Antígenos HLA , Humanos , Inmunoglobulina G/metabolismo , Isoanticuerpos , Receptores de IgG/metabolismo , Azúcares/metabolismo , Trombocitopenia/metabolismo
10.
Int J Mol Sci ; 23(4)2022 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-35216161

RESUMEN

The plasmatic von Willebrand factor (VWF) circulates in a compact form unable to bind platelets. Upon shear stress, the VWF A1 domain is exposed, allowing VWF-binding to platelet glycoprotein Ib-V-IX (GPIbα chain). For a better understanding of the role of this interaction in cardiovascular disease, molecules are needed to specifically interfere with the opened VWF A1 domain interaction with GPIbα. Therefore, we in silico designed and chemically synthetized stable cyclic peptides interfering with the platelet-binding of the VWF A1 domain per se or complexed with botrocetin. Selected peptides (26-34 amino acids) with the lowest-binding free energy were: the monocyclic mono- vOn Willebrand factoR-GPIbα InTerference (ORbIT) peptide and bicyclic bi-ORbIT peptide. Interference of the peptides in the binding of VWF to GPIb-V-IX interaction was retained by flow cytometry in comparison with the blocking of anti-VWF A1 domain antibody CLB-RAg35. In collagen and VWF-dependent whole-blood thrombus formation at a high shear rate, CLB-RAg35 suppressed stable platelet adhesion as well as the formation of multilayered thrombi. Both peptides phenotypically mimicked these changes, although they were less potent than CLB-RAg35. The second-round generation of an improved peptide, namely opt-mono-ORbIT (28 amino acids), showed an increased inhibitory activity under flow. Accordingly, our structure-based design of peptides resulted in physiologically effective peptide-based inhibitors, even for convoluted complexes such as GPIbα-VWF A1.


Asunto(s)
Plaquetas/fisiología , Péptidos/química , Agregación Plaquetaria , Complejo GPIb-IX de Glicoproteína Plaquetaria/química , Factor de von Willebrand/química , Animales , Sitios de Unión , Plaquetas/metabolismo , Células Cultivadas , Caballos , Humanos , Microfluídica , Péptidos/metabolismo , Unión Proteica , Estrés Mecánico , Factor de von Willebrand/metabolismo
11.
Haematologica ; 106(4): 1138-1147, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32336681

RESUMEN

Von Willebrand factor (VWF) is a multimeric hemostatic protein that is synthesized in endothelial cells, where it is stored for secretion in elongated secretory organelles, so-called Weibel-Palade bodies (WPBs). Hemostatic activity of VWF is strongly tied to WPB length, but how endothelial cells control the dimensions of their WPBs is unclear. In this study we used a targeted shRNA screen to identify the longin-SNARE Sec22b as a novel determinant of WPB size and VWF trafficking. We found that Sec22b depletion resulted in loss of the typically elongated WPB morphology along with disintegration of the Golgi and dilation of rough ER (rER) cisternae. This was accompanied by reduced proteolytic processing of VWF, accumulation of VWF in the dilated rER and reduced basal and stimulated VWF secretion. Our data demonstrate that the elongation of WPBs, and thus adhesive activity of its cargo VWF, is determined by the rate of anterograde transport between ER and Golgi, which depends on Sec22b-containing SNARE complexes.


Asunto(s)
Células Endoteliales , Cuerpos de Weibel-Palade , Células Cultivadas , Exocitosis , Factor de von Willebrand/genética
12.
Arterioscler Thromb Vasc Biol ; 40(6): 1441-1453, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32375545

RESUMEN

Megakaryocyte-derived platelets and endothelial cells store their hemostatic cargo in α- and δ-granules and Weibel-Palade bodies, respectively. These storage granules belong to the lysosome-related organelles (LROs), a heterogeneous group of organelles that are rapidly released following agonist-induced triggering of intracellular signaling pathways. Following vascular injury, endothelial Weibel-Palade bodies release their content into the vascular lumen and promote the formation of long VWF (von Willebrand factor) strings that form an adhesive platform for platelets. Binding to VWF strings as well as exposed subendothelial collagen activates platelets resulting in the release of α- and δ-granules, which are crucial events in formation of a primary hemostatic plug. Biogenesis and secretion of these LROs are pivotal for the maintenance of proper hemostasis. Several bleeding disorders have been linked to abnormal generation of LROs in megakaryocytes and endothelial cells. Recent reviews have emphasized common pathways in the biogenesis and biological properties of LROs, focusing mainly on melanosomes. Despite many similarities, LROs in platelet and endothelial cells clearly possess distinct properties that allow them to provide a highly coordinated and synergistic contribution to primary hemostasis by sequentially releasing hemostatic cargo. In this brief review, we discuss in depth the known regulators of α- and δ-granules in megakaryocytes/platelets and Weibel-Palade bodies in endothelial cells, starting from transcription factors that have been associated with granule formation to protein complexes that promote granule maturation. In addition, we provide a detailed view on the interplay between platelet and endothelial LROs in controlling hemostasis as well as their dysfunction in LRO related bleeding disorders.


Asunto(s)
Plaquetas/ultraestructura , Gránulos Citoplasmáticos/fisiología , Células Endoteliales/ultraestructura , Hemostasis/fisiología , Lisosomas/fisiología , Trastornos de la Coagulación Sanguínea/genética , Trastornos de la Coagulación Sanguínea/fisiopatología , Colágeno/fisiología , Gránulos Citoplasmáticos/ultraestructura , Humanos , Lisosomas/ultraestructura , Cuerpos de Weibel-Palade/fisiología , Cuerpos de Weibel-Palade/ultraestructura , Factor de von Willebrand/metabolismo
14.
Haematologica ; 105(11): 2619-2630, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-33131251

RESUMEN

Antibodies that develop in patients with immune thrombotic thrombocytopenic purpura (iTTP) commonly target the spacer epitope R568/F592/R660/Y661/Y665 (RFRYY). In this study we present a detailed contribution of each residue in this epitope for autoantibody binding. Different panels of mutations were introduced here to create a large collection of full-length ADAMTS13 variants comprising conservative (Y←→F), semi-conservative (Y/F→L), non-conservative (Y/F→N) or alanine (Y/F/R→A) substitutions. Previously reported Gain-of-Function (GoF, KYKFF) and truncated 'MDTCS' variants were also included. Sera of 18 patients were screened against all variants. Conservative mutations of the aromatic residues did not reduce the binding of autoantibodies. Moderate resistance was achieved by replacing R568 and R660 by lysines or alanines. Semi-conservative mutations of aromatic residues show a moderate effectiveness in autoantibody resistance. Non-conservative asparagine or alanine mutations of aromatic residues are the most effective. In the mixtures of autoantibodies from the majority (89%) of patients screened, autoantibodies targeting the spacer RFRYY epitope have preponderance compared to other epitopes. Reductions in ADAMTS13 proteolytic activity were observed for all full-length mutant variants, in varying degrees. The greatest activity reductions were observed in the most autoantibody-resistant variants (15-35% residual activity in FRETS-VWF73). Among these, a triple-alanine mutant RARAA showed activity in a VWF multimer assay. This study shows that non-conservative and alanine modifications of residues within the exosite-3 spacer RFRYY epitope in full-length ADAMTS13 resist the binding of autoantibodies from iTTP patients, while retaining residual proteolytic activity. Our study provides a framework for the design of autoantibody-resistant ADAMTS13 variants for further therapeutic development.


Asunto(s)
Púrpura Trombocitopénica Trombótica , Proteínas ADAM , Proteína ADAMTS13/genética , Autoanticuerpos , Epítopos , Humanos , Inmunoglobulina G , Púrpura Trombocitopénica Trombótica/genética
15.
Haematologica ; 104(5): 1046-1054, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30545924

RESUMEN

Hemophilia A is a rare hemorrhagic disorder caused by the lack of functional pro-coagulant factor VIII. Factor VIII replacement therapy in patients with severe hemophilia A results in the development of inhibitory anti-factor VIII IgG in up to 30% of cases. To date, immune tolerance induction, with daily injection of large amounts of factor VIII, is the only strategy to eradicate factor VIII inhibitors. This strategy is, however, efficient in only 60-80% of patients. We investigated whether blocking B-cell receptor signaling upon inhibition of Bruton tyrosine kinase prevents anti-factor VIII immune responses in a mouse model of severe hemophilia A. Factor VIII-naïve and factor VIII-sensitized factor VIII-deficient mice were fed with the selective inhibitor of Bruton tyrosine kinase, (R)-5-amino-1-(1-cyanopiperidin-3-yl)-3-(4-[2,4-difluorophenoxyl] phenyl)-1H pyrazole-4-carboxamide (PF-06250112), to inhibit B-cell receptor signaling prior to challenge with exogenous factor VIII. The consequences on the anti-factor VIII immune response were studied. Inhibition of Bruton tyrosine kinase during the primary anti-factor VIII immune response in factor VIII-naïve mice did not prevent the development of inhibitory anti-factor VIII IgG. In contrast, the anti-factor VIII memory B-cell response was consistently reduced upon treatment of factor VIII-sensitized mice with the Bruton tyrosine kinase inhibitor. The Bruton tyrosine kinase inhibitor reduced the differentiation of memory B cells ex vivo and in vivo following adoptive transfer to factor VIII-naïve animals. Taken together, our data identify inhibition of Bruton tyrosine kinase using PF-06250112 as a strategy to limit the reactivation of factor VIII-specific memory B cells upon re-challenge with therapeutic factor VIII.


Asunto(s)
Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Linfocitos B/inmunología , Modelos Animales de Enfermedad , Factor VIII/fisiología , Hemofilia A/inmunología , Memoria Inmunológica/inmunología , Piperidinas/farmacología , Pirazoles/farmacología , Animales , Formación de Anticuerpos , Linfocitos B/efectos de los fármacos , Linfocitos B/metabolismo , Factor VIII/administración & dosificación , Factor VIII/antagonistas & inhibidores , Hemofilia A/tratamiento farmacológico , Hemofilia A/metabolismo , Tolerancia Inmunológica/efectos de los fármacos , Tolerancia Inmunológica/inmunología , Inmunoglobulina G/efectos de los fármacos , Inmunoglobulina G/inmunología , Memoria Inmunológica/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
16.
Haematologica ; 104(10): 2091-2099, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30630984

RESUMEN

Weibel-Palade bodies are endothelial secretory organelles that contain von Willebrand factor, P-selectin and CD63. Release of von Willebrand factor from Weibel-Palade bodies is crucial for platelet adhesion during primary hemostasis. Endosomal trafficking of proteins like CD63 to Weibel-Palade bodies during maturation is dependent on the adaptor protein complex 3 complex. Mutations in the AP3B1 gene, which encodes the adaptor protein complex 3 ß1 subunit, result in Hermansky-Pudlak syndrome 2, a rare genetic disorder that leads to neutropenia and a mild bleeding diathesis. This is caused by abnormal granule formation in neutrophils and platelets due to defects in trafficking of cargo to secretory organelles. The impact of these defects on the secretory pathway of the endothelium is largely unknown. In this study, we investigated the role of adaptor protein complex 3-dependent mechanisms in trafficking of proteins during Weibel-Palade body maturation in endothelial cells. An ex vivo patient-derived endothelial model of Hermansky-Pudlak syndrome type 2 was established using blood outgrowth endothelial cells that were isolated from a patient with compound heterozygous mutations in AP3B1 Hermansky-Pudlak syndrome type 2 endothelial cells and CRISPR-Cas9-engineered AP3B1-/- endothelial cells contain Weibel-Palade bodies that are entirely devoid of CD63, indicative of disrupted endosomal trafficking. Hermansky-Pudlak syndrome type 2 endothelial cells have impaired Ca2+-mediated and cAMP-mediated exocytosis. Whole proteome analysis revealed that, apart from adaptor protein complex 3 ß1, also the µ1 subunit and the v-SNARE VAMP8 were depleted. Stimulus-induced von Willebrand factor secretion was impaired in CRISPR-Cas9-engineered VAMP8-/-endothelial cells. Our data show that defects in adaptor protein complex 3-dependent maturation of Weibel-Palade bodies impairs exocytosis by affecting the recruitment of VAMP8.


Asunto(s)
Complejo 3 de Proteína Adaptadora , Subunidades beta de Complejo de Proteína Adaptadora , Células Endoteliales , Exocitosis , Síndrome de Hermanski-Pudlak , Proteínas R-SNARE/metabolismo , Cuerpos de Weibel-Palade , Complejo 3 de Proteína Adaptadora/genética , Complejo 3 de Proteína Adaptadora/metabolismo , Subunidades beta de Complejo de Proteína Adaptadora/genética , Subunidades beta de Complejo de Proteína Adaptadora/metabolismo , Señalización del Calcio , Células Cultivadas , Células Endoteliales/metabolismo , Células Endoteliales/patología , Síndrome de Hermanski-Pudlak/genética , Síndrome de Hermanski-Pudlak/metabolismo , Síndrome de Hermanski-Pudlak/patología , Humanos , Mutación , Transporte de Proteínas , Proteínas R-SNARE/genética , Cuerpos de Weibel-Palade/genética , Cuerpos de Weibel-Palade/metabolismo , Cuerpos de Weibel-Palade/patología
17.
Haematologica ; 104(2): 403-416, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30262558

RESUMEN

High titers of HLA antibodies are associated with platelet refractoriness, causing poor platelet increments after transfusions in a subset of patients with HLA antibodies. Currently, we do not know the biological mechanisms that explain the variability in clinical responses in HLA alloimmunized patients receiving platelet transfusions. Previously we showed that a subset of anti-HLA IgG-antibodies induces FcγRIIa-dependent platelet activation and enhanced phagocytosis. Here, we investigated whether anti-HLA IgG can induce complement activation on platelets. We found that a subset of anti-HLA IgG induced complement activation via the classical pathway, causing C4b and C3b deposition and formation of the membrane-attack complex. This resulted in permeabilization of platelet membranes and increased calcium influx. Complement activation also caused enhanced α-granule release, as measured by CD62P surface exposure. Blocking studies revealed that platelet activation was caused by FcγRIIa-dependent signaling as well as HLA antibody induced complement activation. Synergistic complement activation employing combinations of monoclonal IgGs suggested that assembly of oligomeric IgG complexes strongly promoted complement activation through binding of IgGs to different antigenic determinants on HLA. In agreement with this, we observed that preventing anti-HLA-IgG hexamer formation using an IgG-Fc:Fc blocking peptide, completely inhibited C3b and C4b deposition. Our results show that HLA antibodies can induce complement activation on platelets including membrane attack complex formation, pore formation and calcium influx. We propose that these events can contribute to fast platelet clearance in vivo in patients refractory to platelet transfusions with HLA alloantibodies, who may benefit from functional-platelet matching and treatment with complement inhibitors.


Asunto(s)
Plaquetas/inmunología , Vía Clásica del Complemento/inmunología , Proteínas del Sistema Complemento/inmunología , Antígenos HLA/inmunología , Isoanticuerpos/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacología , Plaquetas/metabolismo , Calcio/metabolismo , Vía Clásica del Complemento/efectos de los fármacos , Proteínas del Sistema Complemento/metabolismo , Relación Dosis-Respuesta a Droga , Citometría de Flujo , Humanos , Inmunoglobulina G/inmunología , Inmunoglobulina G/farmacología , Inmunoglobulinas Intravenosas/farmacología , Isoanticuerpos/farmacología , Modelos Biológicos , Activación Plaquetaria/efectos de los fármacos , Unión Proteica , Receptores de IgG/metabolismo
18.
Haematologica ; 104(6): 1268-1276, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30523052

RESUMEN

In autoantibody-mediated autoimmune diseases, autoantibody profiling allows patients to be stratified and links autoantibodies with disease severity and outcome. However, in immune-mediated thrombotic thrombocytopenic purpura (iTTP) patients, stratification according to antibody profiles and their clinical relevance has not been fully explored. We aimed to develop a new type of autoantibody profiling assay for iTTP based on the use of anti-idiotypic antibodies. Anti-idiotypic antibodies against 3 anti-spacer autoantibodies were generated in mice and were used to capture the respective anti-spacer idiotopes from 151 acute iTTP plasma samples. We next deciphered these anti-spacer idiotope profiles in iTTP patients and investigated whether these limited idiotope profiles could be linked with disease severity. We developed 3 anti-idiotypic antibodies that recognized particular idiotopes in the anti-spacer autoantibodies II-1, TTP73 or I-9, that are involved in ADAMTS13 binding; 35%, 24% and 42% of patients were positive for antibodies with the II-1, TTP73 and I-9 idiotopes, respectively. Stratifying patients according to the corresponding 8 anti-spacer idiotope profiles provided a new insight into the anti-spacer II-1, TTP73 and I-9 idiotope profiles in these patients. Finally, these limited idiotope profiles showed no association with disease severity. We successfully developed 3 anti-idiotypic antibodies that allowed us to determine the profiles of the anti-spacer II-1, TTP73 and I-9 idiotopes in iTTP patients. Increasing the number of patients and/or future development of additional anti-idiotypic antibodies against other anti-ADAMTS13 autoantibodies might allow idiotope profiles of clinical, prognostic value to be identified.


Asunto(s)
Anticuerpos Antiidiotipos/inmunología , Autoanticuerpos/inmunología , Susceptibilidad a Enfermedades/inmunología , Púrpura Trombocitopénica Trombótica/inmunología , Proteína ADAMTS13/inmunología , Proteína ADAMTS13/metabolismo , Animales , Autoantígenos/metabolismo , Ensayo de Inmunoadsorción Enzimática , Epítopos/inmunología , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Unión Proteica/inmunología , Púrpura Trombocitopénica Trombótica/diagnóstico , Púrpura Trombocitopénica Trombótica/metabolismo , Índice de Severidad de la Enfermedad
19.
Arterioscler Thromb Vasc Biol ; 38(7): 1549-1561, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29880488

RESUMEN

OBJECTIVE: Endothelial cells store VWF (von Willebrand factor) in rod-shaped secretory organelles, called Weibel-Palade bodies (WPBs). WPB exocytosis is coordinated by a complex network of Rab GTPases, Rab effectors, and SNARE (soluble NSF attachment protein receptor) proteins. We have previously identified STXBP1 as the link between the Rab27A-Slp4-a complex on WPBs and the SNARE proteins syntaxin-2 and -3. In this study, we investigate the function of syntaxin-3 in VWF secretion. APPROACH AND RESULTS: In human umbilical vein endothelial cells and in blood outgrowth endothelial cells (BOECs) from healthy controls, endogenous syntaxin-3 immunolocalized to WPBs. A detailed analysis of BOECs isolated from a patient with variant microvillus inclusion disease, carrying a homozygous mutation in STX3(STX3-/-), showed a loss of syntaxin-3 protein and absence of WPB-associated syntaxin-3 immunoreactivity. Ultrastructural analysis revealed no detectable differences in morphology or prevalence of immature or mature WPBs in control versus STX3-/- BOECs. VWF multimer analysis showed normal patterns in plasma of the microvillus inclusion disease patient, and media from STX3-/- BOECs, together indicating WPB formation and maturation are unaffected by absence of syntaxin-3. However, a defect in basal as well as Ca2+- and cAMP-mediated VWF secretion was found in the STX3-/- BOECs. We also show that syntaxin-3 interacts with the WPB-associated SNARE protein VAMP8 (vesicle-associated membrane protein-8). CONCLUSIONS: Our data reveal syntaxin-3 as a novel WPB-associated SNARE protein that controls WPB exocytosis.


Asunto(s)
Células Endoteliales/metabolismo , Exocitosis , Síndromes de Malabsorción/metabolismo , Microvellosidades/patología , Mucolipidosis/metabolismo , Proteínas Qa-SNARE/metabolismo , Cuerpos de Weibel-Palade/metabolismo , Factor de von Willebrand/metabolismo , Calcio/metabolismo , Células Cultivadas , AMP Cíclico/metabolismo , Células Endoteliales/ultraestructura , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Síndromes de Malabsorción/diagnóstico , Síndromes de Malabsorción/genética , Microvellosidades/genética , Microvellosidades/metabolismo , Mucolipidosis/diagnóstico , Mucolipidosis/genética , Mutación , Proteínas Qa-SNARE/genética , Proteínas R-SNARE/metabolismo , Vías Secretoras , Transducción de Señal , Cuerpos de Weibel-Palade/ultraestructura
20.
Semin Thromb Hemost ; 44(6): 568-577, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29439277

RESUMEN

Nonsevere hemophilia A (NSHA) is an inherited X-linked bleeding disorder, caused by mutations of the F8 gene, leading to decreases of clotting factor VIII (FVIII) levels to 1 to 40 IU/dL. Desmopressin is the first therapeutic option for NSHA, but 40 to 50% of patients fail to attain adequate postinfusion FVIII levels. Thus, in these cases, FVIII concentrates remain the mainstay of treatment. The development of neutralizing FVIII antibodies (inhibitors) is a major challenge with replacement therapy. In contrast to severe disease, NSHA patients have a lifelong risk of inhibitor development. Recent data indicate that inhibitors are associated with a deterioration of clinical outcome, illustrated by an increase in bleeding and mortality rate. F8 genotype is an important risk factor for inhibitor occurrence together with surgical interventions and a high dose of FVIII concentrate. Adequate prevention and treatment of inhibitors in NSHA patients is limited by a lack of understanding of the underlying immunological mechanisms. Elucidation of the immunology driving inhibitor development is required to identify high-risk patients, to understand the association between clinical risk factors and inhibitor occurrence, and to provide the opportunity to develop new preventive and therapeutic strategies.


Asunto(s)
Factor VIII/uso terapéutico , Hemofilia A/terapia , Factor VIII/farmacología , Hemofilia A/patología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA