Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
PLoS Pathog ; 18(4): e1009832, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35385558

RESUMEN

Coccidioides spp. are mammalian fungal pathogens endemic to the Southwestern US and other desert regions of Mexico, Central and South America, with the bulk of US infections occurring in California and Arizona. In the soil, Coccidioides grows in a hyphal form that differentiates into 3-5 micron asexual spores (arthroconidia). When arthroconidia are inhaled by mammals they undergo a unique developmental transition from polar hyphal growth to isotropic expansion with multiple rounds of nuclear division, prior to segmentation, forming large spherules filled with endospores. Very little is understood about the molecular basis of spherule formation. Here we characterize the role of the conserved transcription factor Ryp1 in Coccidioides development. We show that Coccidioides Δryp1 mutants have altered colony morphology under hypha-promoting conditions and are unable to form mature spherules under spherule-promoting conditions. We analyze the transcriptional profile of wild-type and Δryp1 mutant cells under hypha- and spherule-promoting conditions, thereby defining a set of hypha- or spherule-enriched transcripts ("morphology-regulated" genes) that are dependent on Ryp1 for their expression. Forty percent of morphology-regulated expression is Ryp1-dependent, indicating that Ryp1 plays a dual role in both hyphal and spherule development. Ryp1-dependent transcripts include key virulence factors such as SOWgp, which encodes the spherule outer wall glycoprotein. Concordant with its role in spherule development, we find that the Δryp1 mutant is completely avirulent in the mouse model of coccidioidomycosis, indicating that Ryp1-dependent pathways are essential for the ability of Coccidioides to cause disease. Vaccination of C57BL/6 mice with live Δryp1 spores does not provide any protection from lethal C. posadasii intranasal infection, consistent with our findings that the Δryp1 mutant fails to make mature spherules and likely does not express key antigens required for effective vaccination. Taken together, this work identifies the first transcription factor that drives mature spherulation and virulence in Coccidioides.


Asunto(s)
Coccidioides , Factores de Transcripción , Animales , Coccidioides/genética , Proteínas Fúngicas , Expresión Génica , Mamíferos , Ratones , Ratones Endogámicos C57BL , Esporas Fúngicas/genética , Factores de Transcripción/genética , Virulencia
2.
PLoS Pathog ; 18(6): e1010417, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35731824

RESUMEN

Intracellular pathogens secrete effectors to manipulate their host cells. Histoplasma capsulatum (Hc) is a fungal intracellular pathogen of humans that grows in a yeast form in the host. Hc yeasts are phagocytosed by macrophages, where fungal intracellular replication precedes macrophage lysis. The most abundant virulence factor secreted by Hc yeast cells is Calcium Binding Protein 1 (Cbp1), which is absolutely required for macrophage lysis. Here we take an evolutionary, structural, and cell biological approach to understand Cbp1 function. We find that Cbp1 is present only in the genomes of closely related dimorphic fungal species of the Ajellomycetaceae family that lead primarily intracellular lifestyles in their mammalian hosts (Histoplasma, Paracoccidioides, and Emergomyces), but not conserved in the extracellular fungal pathogen Blastomyces dermatitidis. We observe a high rate of fixation of non-synonymous substitutions in the Cbp1 coding sequences, indicating that Cbp1 is under positive selection. We determine the de novo structures of Hc H88 Cbp1 and the Paracoccidioides americana (Pb03) Cbp1, revealing a novel "binocular" fold consisting of a helical dimer arrangement wherein two helices from each monomer contribute to a four-helix bundle. In contrast to Pb03 Cbp1, we show that Emergomyces Cbp1 orthologs are unable to stimulate macrophage lysis when expressed in the Hc cbp1 mutant. Consistent with this result, we find that wild-type Emergomyces africanus yeast are able to grow within primary macrophages but are incapable of lysing them. Finally, we use subcellular fractionation of infected macrophages and indirect immunofluorescence to show that Cbp1 localizes to the macrophage cytosol during Hc infection, making this the first instance of a phagosomal human fungal pathogen directing an effector into the cytosol of the host cell. We additionally show that Cbp1 forms a complex with Yps-3, another known Hc virulence factor that accesses the cytosol. Taken together, these data imply that Cbp1 is a fungal virulence factor under positive selection that localizes to the cytosol to trigger host cell lysis.


Asunto(s)
Proteínas de Unión al Calcio , Histoplasmosis , Macrófagos , Factores de Virulencia , Animales , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Histoplasma/metabolismo , Histoplasmosis/microbiología , Humanos , Macrófagos/microbiología , Mamíferos , Saccharomyces cerevisiae , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
3.
PLoS Pathog ; 18(9): e1010237, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36174103

RESUMEN

The fungal pathogen Histoplasma capsulatum (Hc) invades, replicates within, and destroys macrophages. To interrogate the molecular mechanisms underlying this interaction, we conducted a host-directed CRISPR-Cas9 screen and identified 361 genes that modify macrophage susceptibility to Hc infection, greatly expanding our understanding of host gene networks targeted by Hc. We identified pathways that have not been previously implicated in Hc interaction with macrophages, including the ragulator complex (involved in nutrient stress sensing), glycosylation enzymes, protein degradation machinery, mitochondrial respiration genes, solute transporters, and the ER membrane complex (EMC). The highest scoring protective hits included the complement C3a receptor (C3aR), a G-protein coupled receptor (GPCR) that recognizes the complement fragment C3a. Although it is known that complement components react with the fungal surface, leading to opsonization and release of small peptide fragments such as C3a, a role for C3aR in macrophage interactions with fungi has not been elucidated. We demonstrated that whereas C3aR is dispensable for macrophage phagocytosis of bacteria and latex beads, it is critical for optimal macrophage capture of pathogenic fungi, including Hc, the ubiquitous fungal pathogen Candida albicans, and the causative agent of Valley Fever Coccidioides posadasii. We showed that C3aR localizes to the early phagosome during Hc infection where it coordinates the formation of actin-rich membrane protrusions that promote Hc capture. We also showed that the EMC promotes surface expression of C3aR, likely explaining its identification in our screen. Taken together, our results provide new insight into host processes that affect Hc-macrophage interactions and uncover a novel and specific role for C3aR in macrophage recognition of fungi.


Asunto(s)
Actinas , Histoplasmosis , Receptores de Complemento/metabolismo , Macrófagos/metabolismo , Histoplasma/genética , Histoplasma/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Fragmentos de Péptidos
4.
PLoS Genet ; 17(4): e1009509, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33826622

RESUMEN

[This corrects the article DOI: 10.1371/journal.pgen.1005395.].

5.
PLoS Biol ; 17(9): e3000168, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31568523

RESUMEN

Phenotypic switching between 2 opposing cellular states is a fundamental aspect of biology, and fungi provide facile systems to analyze the interactions between regulons that control this type of switch. A long-standing mystery in fungal pathogens of humans is how thermally dimorphic fungi switch their developmental form in response to temperature. These fungi, including the subject of this study, Histoplasma capsulatum, are temperature-responsive organisms that utilize unknown regulatory pathways to couple their cell shape and associated attributes to the temperature of their environment. H. capsulatum grows as a multicellular hypha in the soil that switches to a pathogenic yeast form in response to the temperature of a mammalian host. These states can be triggered in the laboratory simply by growing the fungus either at room temperature (RT; which promotes hyphal growth) or at 37 °C (which promotes yeast-phase growth). Prior worked revealed that 15% to 20% of transcripts are differentially expressed in response to temperature, but it is unclear which transcripts are linked to specific phenotypic changes, such as cell morphology or virulence. To elucidate temperature-responsive regulons, we previously identified 4 transcription factors (required for yeast-phase growth [Ryp]1-4) that are required for yeast-phase growth at 37 °C; in each ryp mutant, the fungus grows constitutively as hyphae regardless of temperature, and the cells fail to express genes that are normally induced in response to growth at 37 °C. Here, we perform the first genetic screen to identify genes required for hyphal growth of H. capsulatum at RT and find that disruption of the signaling mucin MSB2 results in a yeast-locked phenotype. RNA sequencing (RNAseq) experiments reveal that MSB2 is not required for the majority of gene expression changes that occur when cells are shifted to RT. However, a small subset of temperature-responsive genes is dependent on MSB2 for its expression, thereby implicating these genes in the process of filamentation. Disruption or knockdown of an Msb2-dependent mitogen-activated protein (MAP) kinase (HOG2) and an APSES transcription factor (STU1) prevents hyphal growth at RT, validating that the Msb2 regulon contains genes that control filamentation. Notably, the Msb2 regulon shows conserved hyphal-specific expression in other dimorphic fungi, suggesting that this work defines a small set of genes that are likely to be conserved regulators and effectors of filamentation in multiple fungi. In contrast, a few yeast-specific transcripts, including virulence factors that are normally expressed only at 37 °C, are inappropriately expressed at RT in the msb2 mutant, suggesting that expression of these genes is coupled to growth in the yeast form rather than to temperature. Finally, we find that the yeast-promoting transcription factor Ryp3 associates with the MSB2 promoter and inhibits MSB2 transcript expression at 37 °C, whereas Msb2 inhibits accumulation of Ryp transcripts and proteins at RT. These findings indicate that the Ryp and Msb2 circuits antagonize each other in a temperature-dependent manner, thereby allowing temperature to govern cell shape and gene expression in this ubiquitous fungal pathogen of humans.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Histoplasma/fisiología , Hifa/crecimiento & desarrollo , Mucinas/metabolismo , Transducción de Señal , Proteínas Fúngicas/metabolismo , Perfilación de la Expresión Génica , Genes Fúngicos , Histoplasma/citología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Mucinas/genética , Temperatura
7.
PLoS Genet ; 11(7): e1005395, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26177267

RESUMEN

Eukaryotic cells integrate layers of gene regulation to coordinate complex cellular processes; however, mechanisms of post-transcriptional gene regulation remain poorly studied. The human fungal pathogen Histoplasma capsulatum (Hc) responds to environmental or host temperature by initiating unique transcriptional programs to specify multicellular (hyphae) or unicellular (yeast) developmental states that function in infectivity or pathogenesis, respectively. Here we used recent advances in next-generation sequencing to uncover a novel re-programming of transcript length between Hc developmental cell types. We found that ~2% percent of Hc transcripts exhibit 5' leader sequences that differ markedly in length between morphogenetic states. Ribosome density and mRNA abundance measurements of differential leader transcripts revealed nuanced transcriptional and translational regulation. One such class of regulated longer leader transcripts exhibited tight transcriptional and translational repression. Further examination of these dually repressed genes revealed that some control Hc morphology and that their strict regulation is necessary for the pathogen to make appropriate developmental decisions in response to temperature.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Histoplasma/genética , Interacciones Huésped-Patógeno/genética , Transcripción Genética , Proteínas Fúngicas/biosíntesis , Histoplasma/patogenicidad , Humanos , ARN Mensajero/genética , Ribosomas/genética , Temperatura
8.
PLoS Biol ; 11(7): e1001614, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23935449

RESUMEN

Survival at host temperature is a critical trait for pathogenic microbes of humans. Thermally dimorphic fungal pathogens, including Histoplasma capsulatum, are soil fungi that undergo dramatic changes in cell shape and virulence gene expression in response to host temperature. How these organisms link changes in temperature to both morphologic development and expression of virulence traits is unknown. Here we elucidate a temperature-responsive transcriptional network in H. capsulatum, which switches from a filamentous form in the environment to a pathogenic yeast form at body temperature. The circuit is driven by three highly conserved factors, Ryp1, Ryp2, and Ryp3, that are required for yeast-phase growth at 37°C. Ryp factors belong to distinct families of proteins that control developmental transitions in fungi: Ryp1 is a member of the WOPR family of transcription factors, and Ryp2 and Ryp3 are both members of the Velvet family of proteins whose molecular function is unknown. Here we provide the first evidence that these WOPR and Velvet proteins interact, and that Velvet proteins associate with DNA to drive gene expression. Using genome-wide chromatin immunoprecipitation studies, we determine that Ryp1, Ryp2, and Ryp3 associate with a large common set of genomic loci that includes known virulence genes, indicating that the Ryp factors directly control genes required for pathogenicity in addition to their role in regulating cell morphology. We further dissect the Ryp regulatory circuit by determining that a fourth transcription factor, which we name Ryp4, is required for yeast-phase growth and gene expression, associates with DNA, and displays interdependent regulation with Ryp1, Ryp2, and Ryp3. Finally, we define cis-acting motifs that recruit the Ryp factors to their interwoven network of temperature-responsive target genes. Taken together, our results reveal a positive feedback circuit that directs a broad transcriptional switch between environmental and pathogenic states in response to temperature.


Asunto(s)
Histoplasma/patogenicidad , Virulencia/fisiología , Inmunoprecipitación de Cromatina , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica/genética , Regulación Fúngica de la Expresión Génica/fisiología , Histoplasma/genética , Temperatura , Virulencia/genética
9.
Eukaryot Cell ; 12(6): 828-52, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23563482

RESUMEN

Histoplasma capsulatum is a fungal pathogen that infects both healthy and immunocompromised hosts. In regions where it is endemic, H. capsulatum grows in the soil and causes respiratory and systemic disease when inhaled by humans. An interesting aspect of H. capsulatum biology is that it adopts specialized developmental programs in response to its environment. In the soil, it grows as filamentous chains of cells (mycelia) that produce asexual spores (conidia). When the soil is disrupted, conidia aerosolize and are inhaled by mammalian hosts. Inside a host, conidia germinate into yeast-form cells that colonize immune cells and cause disease. Despite the ability of conidia to initiate infection and disease, they have not been explored on a molecular level. We developed methods to purify H. capsulatum conidia, and we show here that these cells germinate into filaments at room temperature and into yeast-form cells at 37°C. Conidia internalized by macrophages germinate into the yeast form and proliferate within macrophages, ultimately lysing the host cells. Similarly, infection of mice with purified conidia is sufficient to establish infection and yield viable yeast-form cells in vivo. To characterize conidia on a molecular level, we performed whole-genome expression profiling of conidia, yeast, and mycelia from two highly divergent H. capsulatum strains. In parallel, we used homology and protein domain analysis to manually annotate the predicted genes of both strains. Analyses of the resultant data defined sets of transcripts that reflect the unique molecular states of H. capsulatum conidia, yeast, and mycelia.


Asunto(s)
Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Histoplasma/genética , Micelio/genética , ARN de Hongos/genética , Esporas Fúngicas/genética , Transcriptoma , Animales , Proteínas Fúngicas/clasificación , Proteínas Fúngicas/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Histoplasma/metabolismo , Histoplasma/patogenicidad , Histoplasmosis/microbiología , Humanos , Macrófagos/microbiología , Ratones , Anotación de Secuencia Molecular , Micelio/metabolismo , Micelio/patogenicidad , ARN de Hongos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Esporas Fúngicas/metabolismo , Esporas Fúngicas/patogenicidad , Virulencia
10.
bioRxiv ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38895214

RESUMEN

Coccidioides spp . are part of a group of thermally dimorphic fungal pathogens, which grow as filamentous cells (hyphae) in the soil and transform to a different morphology upon inhalation into the host. The Coccidioides host form, the spherule, is unique and highly under characterized due to both technical and biocontainment challenges. Each spherule arises from an environmental spore (arthroconidium), matures, and develops hundreds of internal endospores, which are released from the spherule upon rupture. Each endospore can then go on to form another spherule in a cycle called spherulation. One of the foremost technical challenges has been reliably growing spherules in culture without the formation of contaminating hyphae, and consistently inducing endospore release from spherules. Here, we present optimization of in vitro spherule growth and endospore release, by closely controlling starting cell density in the culture, using freshly-harvested arthroconidia, and decreasing the concentration of multiple salts in spherulation media. We developed a minimal media to test spherule growth on various carbon and nitrogen sources. We defined a critical role for the dispersant Tamol in both early spherule formation and prevention of the accumulation of a visible film around spherules. Finally, we examined how the conditions under which arthroconidia are generated influence their transcriptome and subsequent development into spherules, demonstrating that this is an important variable to control when designing spherulation experiments. Together, our data reveal multiple strategies to optimize in vitro spherulation growth, enabling characterization of this virulence-relevant morphology.

11.
bioRxiv ; 2023 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-37131633

RESUMEN

The human fungal pathogen Histoplasma changes its morphology in response to temperature. At 37°C it grows as a budding yeast whereas at room temperature it transitions to hyphal growth. Prior work has demonstrated that 15-20% of transcripts are temperature-regulated, and that transcription factors Ryp1-4 are necessary to establish yeast growth. However, little is known about transcriptional regulators of the hyphal program. To identify TFs that regulate filamentation, we utilize chemical inducers of hyphal growth. We show that addition of cAMP analogs or an inhibitor of cAMP breakdown overrides yeast morphology, yielding inappropriate hyphal growth at 37°C. Additionally, butyrate supplementation triggers hyphal growth at 37°C. Transcriptional profiling of cultures filamenting in response to cAMP or butyrate reveals that a limited set of genes respond to cAMP while butyrate dysregulates a larger set. Comparison of these profiles to previous temperature- or morphology-regulated gene sets identifies a small set of morphology-specific transcripts. This set contains 9 TFs of which we characterized three, STU1 , FBC1 , and PAC2 , whose orthologs regulate development in other fungi. We found that each of these TFs is individually dispensable for room-temperature (RT) induced filamentation but each is required for other aspects of RT development. FBC1 and PAC2 , but not STU1 , are necessary for filamentation in response to cAMP at 37°C. Ectopic expression of each of these TFs is sufficient to induce filamentation at 37°C. Finally, PAC2 induction of filamentation at 37°C is dependent on STU1 , suggesting these TFs form a regulatory circuit that, when activated at RT, promotes the hyphal program. Importance: Fungal illnesses pose a significant disease burden. However, the regulatory circuits that govern the development and virulence of fungi remain largely unknown. This study utilizes chemicals that can override the normal growth morphology of the human pathogen Histoplasma . Using transcriptomic approaches, we identify novel regulators of hyphal morphology and refine our understanding of the transcriptional circuits governing morphology in Histoplasma .

12.
bioRxiv ; 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37461713

RESUMEN

Targeted gene disruption is challenging in the dimorphic fungal pathogen Histoplasma due to the low frequency of homologous recombination. Transformed DNA is either integrated ectopically into the genome or maintained extra chromosomally by de novo addition of telomeric sequences. Based on a system developed in Blastomyces, we adapted a CRISPR/Cas9 system to facilitate targeted gene disruption in Histoplasma with high efficiency. We express a codon-optimized version of Cas9 as well as guide RNAs from a single ectopic vector carrying a selectable marker. Once the desired mutation is verified, one can screen for isolates that have lost the Cas9 vector by simply removing the selective pressure. Multiple mutations can then be generated in the same strain by retransforming the Cas9 vector carrying different guides. We used this system to disrupt a number of target genes including RYP2 and SRE1 where loss-of-function mutations could be monitored visually by colony morphology or color, respectively. Interestingly, expression of two guide RNAs targeting the 5' and 3' ends of a gene allowed isolation of deletion mutants where the sequence between the guide RNAs was removed from the genome. Whole-genome sequencing showed that the frequency of off-target mutations associated with the Cas9 nuclease was negligible. Finally, we increased the frequency of gene disruption by using an endogenous Histoplasma regulatory sequence to drive guide RNA expression. These tools transform our ability to generate targeted mutations in Histoplasma.

13.
mSphere ; 8(6): e0037023, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37819140

RESUMEN

IMPORTANCE: Histoplasma is a primary fungal pathogen with the ability to infect otherwise healthy mammalian hosts, causing systemic and sometimes life-threatening disease. Thus far, molecular genetic manipulation of this organism has utilized RNA interference, random insertional mutagenesis, and a homologous recombination protocol that is highly variable and often inefficient. Targeted gene manipulations have been challenging due to poor rates of homologous recombination events in Histoplasma. Interrogation of the virulence strategies of this organism would be highly accelerated by a means of efficiently generating targeted mutations. We have developed a recyclable CRISPR/Cas9 system that can be used to introduce gene disruptions in Histoplasma with high efficiency, thereby allowing disruption of multiple genes.


Asunto(s)
Sistemas CRISPR-Cas , Histoplasma , Animales , Histoplasma/genética , Recombinación Homóloga , Mutagénesis Sitio-Dirigida , Mutagénesis Insercional , Mamíferos
14.
Nat Cell Biol ; 25(11): 1600-1615, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37857833

RESUMEN

A widespread strategy employed by pathogens to establish infection is to inhibit host-cell protein synthesis. Legionella pneumophila, an intracellular bacterial pathogen and the causative organism of Legionnaires' disease, secretes a subset of protein effectors into host cells that inhibit translation elongation. Mechanistic insights into how the bacterium targets translation elongation remain poorly defined. We report here that the Legionella effector SidI functions in an unprecedented way as a transfer-RNA mimic that directly binds to and glycosylates the ribosome. The 3.1 Å cryo-electron microscopy structure of SidI reveals an N-terminal domain with an 'inverted L' shape and surface-charge distribution characteristic of tRNA mimicry, and a C-terminal domain that adopts a glycosyl transferase fold that licenses SidI to utilize GDP-mannose as a sugar precursor. This coupling of tRNA mimicry and enzymatic action endows SidI with the ability to block protein synthesis with a potency comparable to ricin, one of the most powerful toxins known. In Legionella-infected cells, the translational pausing activated by SidI elicits a stress response signature mimicking the ribotoxic stress response, which is activated by elongation inhibitors that induce ribosome collisions. SidI-mediated effects on the ribosome activate the stress kinases ZAKα and p38, which in turn drive an accumulation of the protein activating transcription factor 3 (ATF3). Intriguingly, ATF3 escapes the translation block imposed by SidI, translocates to the nucleus and orchestrates the transcription of stress-inducible genes that promote cell death, revealing a major role for ATF3 in the response to collided ribosome stress. Together, our findings elucidate a novel mechanism by which a pathogenic bacterium employs tRNA mimicry to hijack a ribosome-to-nuclear signalling pathway that regulates cell fate.


Asunto(s)
Legionella pneumophila , Legionella , Enfermedad de los Legionarios , Humanos , Legionella/metabolismo , Microscopía por Crioelectrón , Legionella pneumophila/genética , Legionella pneumophila/metabolismo , Enfermedad de los Legionarios/genética , Enfermedad de los Legionarios/microbiología , Transferasas/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/farmacología
15.
J Fungi (Basel) ; 8(12)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36547568

RESUMEN

The human fungal pathogen Coccidioides spp. causes valley fever, a treatment-refractory and sometimes deadly disease prevalent in arid regions of the western hemisphere. Fungal virulence in the mammalian host hinges on a switch between growth as hyphae and as large spherules containing infectious spores. How these virulence programs are encoded in the genome remains poorly understood. Drawing on Coccidioides genomic resources, we first discovered a new facet of genome organization in this system: spherule-gene islands, clusters of genes physically linked in the genome that exhibited specific mRNA induction in the spherule phase. Next, we surveyed copy-number variation genome-wide among strains of C. posadasii. Emerging from this catalog were spherule-gene islands with striking presence-absence differentiation between C. posadasii populations, a pattern expected from virulence factors subjected to different selective pressures across habitats. Finally, analyzing single-nucleotide differences across C. posadasii strains, we identified signatures of natural selection in spherule-expressed genes. Together, our data establish spherule-gene islands as candidate determinants of virulence and targets of selection in Coccidioides.

16.
mBio ; 13(1): e0257421, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35089059

RESUMEN

Histoplasma capsulatum, a dimorphic fungal pathogen, is the most common cause of fungal respiratory infections in immunocompetent hosts. Histoplasma is endemic in the Ohio and Mississippi River Valleys in the United States and is also distributed worldwide. Previous studies have revealed at least eight clades, each specific to a geographic location: North American classes 1 and 2 (NAm 1 and NAm 2), Latin American groups A and B (LAm A and LAm B), Eurasian, Netherlands, Australian and African, and an additional distinct lineage (H81) comprised of Panamanian isolates. Previously assembled Histoplasma genomes are highly fragmented, with the highly repetitive G217B (NAm 2) strain, which has been used for most whole-genome-scale transcriptome studies, assembled into over 250 contigs. In this study, we set out to fully assemble the repeat regions and characterize the large-scale genome architecture of Histoplasma species. We resequenced five Histoplasma strains (WU24 [NAm 1], G217B [NAm 2], H88 [African], G186AR [Panama], and G184AR [Panama]) using Oxford Nanopore Technologies long-read sequencing technology. Here, we report chromosomal-level assemblies for all five strains, which exhibit extensive synteny among the geographically distant Histoplasma isolates. The new assemblies revealed that RYP2, a major regulator of morphology and virulence, is duplicated in G186AR. In addition, we mapped previously generated transcriptome data sets onto the newly assembled chromosomes. Our analyses revealed that the expression of transposons and transposon-embedded genes are upregulated in yeast phase compared to mycelial phase in the G217B and H88 strains. This study provides an important resource for fungal researchers and further highlights the importance of chromosomal-level assemblies in analyzing high-throughput data sets. IMPORTANCE Histoplasma species are dimorphic fungi causing significant morbidity and mortality worldwide. These fungi grow as mold in the soil and as budding yeast within the human host. Histoplasma can be isolated from soil in diverse regions, including North America, South America, Africa, and Europe. Phylogenetically distinct species of Histoplasma have been isolated and sequenced. However, for the commonly used strains, genome assemblies have been fragmented, leading to underutilization of genome-scale data. This study provides chromosome-level assemblies of the commonly used Histoplasma strains using long-read sequencing technology. Comparative analysis of these genomes shows largely conserved gene order within the chromosomes. Mapping existing transcriptome data on these new assemblies reveals clustering of transcriptionally coregulated genes. The results of this study highlight the importance of obtaining chromosome-level assemblies in understanding the biology of human fungal pathogens.


Asunto(s)
Histoplasma , Micosis , Humanos , Sintenía , Australia , Histoplasma/genética , Saccharomyces cerevisiae/genética , Cromosomas , Genoma Fúngico
17.
BMC Microbiol ; 11: 216, 2011 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-21958208

RESUMEN

BACKGROUND: The fungal pathogen Histoplasma capsulatum is thought to be the most common cause of fungal respiratory infections in immunocompetent humans, yet little is known about its biology. Here we provide the first genome-wide studies to experimentally validate its genome annotation. A functional interrogation of the Histoplasma genome provides critical support for continued investigation into the biology and pathogenesis of H. capsulatum and related fungi. RESULTS: We employed a three-pronged approach to provide a functional annotation for the H. capsulatum G217B strain. First, we probed high-density tiling arrays with labeled cDNAs from cells grown under diverse conditions. These data defined 6,172 transcriptionally active regions (TARs), providing validation of 6,008 gene predictions. Interestingly, 22% of these predictions showed evidence of anti-sense transcription. Additionally, we detected transcription of 264 novel genes not present in the original gene predictions. To further enrich our analysis, we incorporated expression data from whole-genome oligonucleotide microarrays. These expression data included profiling under growth conditions that were not represented in the tiling experiment, and validated an additional 2,249 gene predictions. Finally, we compared the G217B gene predictions to other available fungal genomes, and observed that an additional 254 gene predictions had an ortholog in a different fungal species, suggesting that they represent genuine coding sequences. CONCLUSIONS: These analyses yielded a high confidence set of validated gene predictions for H. capsulatum. The transcript sets resulting from this study are a valuable resource for further experimental characterization of this ubiquitous fungal pathogen. The data is available for interactive exploration at http://histo.ucsf.edu.


Asunto(s)
Proteínas Fúngicas/genética , Perfilación de la Expresión Génica , Histoplasma/genética , Histoplasmosis/microbiología , Transcripción Genética , Proteínas Fúngicas/metabolismo , Genoma Fúngico , Humanos , Anotación de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos
18.
Elife ; 102021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33904404

RESUMEN

The unfolded protein response (UPR) maintains protein folding homeostasis in the endoplasmic reticulum (ER). In metazoan cells, the Ire1 branch of the UPR initiates two functional outputs-non-conventional mRNA splicing and selective mRNA decay (RIDD). By contrast, Ire1 orthologs from Saccharomyces cerevisiae and Schizosaccharomyces pombe are specialized for only splicing or RIDD, respectively. Previously, we showed that the functional specialization lies in Ire1's RNase activity, which is either stringently splice-site specific or promiscuous (Li et al., 2018). Here, we developed an assay that reports on Ire1's RNase promiscuity. We found that conversion of two amino acids within the RNase domain of S. cerevisiae Ire1 to their S. pombe counterparts rendered it promiscuous. Using biochemical assays and computational modeling, we show that the mutations rewired a pair of salt bridges at Ire1 RNase domain's dimer interface, changing its protomer alignment. Thus, Ire1 protomer alignment affects its substrates specificity.


Asunto(s)
Glicoproteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Subunidades de Proteína/metabolismo , ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Glicoproteínas de Membrana/genética , Simulación de Dinámica Molecular , Filogenia , Proteínas Serina-Treonina Quinasas/genética , Empalme del ARN , Ribonucleasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Alineación de Secuencia , Especificidad por Sustrato
19.
PLoS One ; 10(8): e0134738, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26252667

RESUMEN

The rat kangaroo (long-nosed potoroo, Potorous tridactylus) is a marsupial native to Australia. Cultured rat kangaroo kidney epithelial cells (PtK) are commonly used to study cell biological processes. These mammalian cells are large, adherent, and flat, and contain large and few chromosomes-and are thus ideal for imaging intra-cellular dynamics such as those of mitosis. Despite this, neither the rat kangaroo genome nor transcriptome have been sequenced, creating a challenge for probing the molecular basis of these cellular dynamics. Here, we present the sequencing, assembly and annotation of the draft rat kangaroo de novo transcriptome. We sequenced 679 million reads that mapped to 347,323 Trinity transcripts and 20,079 Unigenes. We present statistics emerging from transcriptome-wide analyses, and analyses suggesting that the transcriptome covers full-length sequences of most genes, many with multiple isoforms. We also validate our findings with a proof-of-concept gene knockdown experiment. We expect that this high quality transcriptome will make rat kangaroo cells a more tractable system for linking molecular-scale function and cellular-scale dynamics.


Asunto(s)
Biología Celular , Potoroidae/genética , Transcriptoma/genética , Animales , División Celular/genética , Línea Celular , Difusión de la Información , Anotación de Secuencia Molecular , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN , Especificidad de la Especie
20.
Protein Sci ; 13(3): 763-72, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-14767072

RESUMEN

The Escherichia coli aspartate (AATase) and tyrosine (TATase) aminotransferases share 43% sequence identity and 72% similarity, but AATase has only 0.08% and 0.01% of the TATase activities (k(cat)/K(m)) for tyrosine and phenylalanine, respectively. Approximately 5% of TATase activity was introduced into the AATase framework earlier both by rational design (six mutations, termed HEX) and by directed evolution (9-17 mutations). The enzymes realized from the latter procedure complement tyrosine auxotrophy in TATase deficient E. coli. HEX complements even more poorly than does wild-type AATase, even though the (k(cat)/K(m)) value for tyrosine exhibited by HEX is similar to those of the enzymes found from directed evolution. HEX, however, is characterized by very low values of K(m) and K(D) for dicarboxylic ligands, and by a particularly slow release for oxaloacetate, the product of the reaction with aspartate and a TCA cycle intermediate. These observations suggest that HEX exists largely as an enzyme-product complex in vivo. HEX was therefore subjected to a single round of directed evolution with selection for complementation of tyrosine auxotrophy. A variant with a single amino acid substitution, A293D, exhibited substantially improved TATase function in vivo. The A293D mutation alleviates the tight binding to dicarboxylic ligands as K(m)s for aspartate and alpha-ketoglutarate are >20-fold higher in the HEX + A293D construct compared to HEX. This mutation also increased k(cat)/K(m)(Tyr) threefold. A second mutation, I73V, elicited smaller but similar effects. Both residues are in close proximity to Arg292 and the mutations may function to modulate the arginine switch mechanism responsible for dual substrate recognition in TATases and HEX.


Asunto(s)
Aspartato Aminotransferasas/genética , Evolución Molecular Dirigida , Escherichia coli/enzimología , Tirosina Transaminasa/genética , Aminoácidos/genética , Aminoácidos/metabolismo , Aspartato Aminotransferasas/metabolismo , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , División Celular/genética , Clonación Molecular , Barajamiento de ADN , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Eliminación de Gen , Cinética , Modelos Químicos , Estructura Molecular , Mutagénesis Sitio-Dirigida/genética , Fenilalanina/genética , Fenilalanina/metabolismo , Mutación Puntual/genética , Ingeniería de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Sacarosa/química , Transformación Bacteriana , Tirosina Transaminasa/metabolismo , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA