Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pediatr Res ; 93(7): 2005-2013, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36319696

RESUMEN

BACKGROUND: Oral microbial therapy has been studied as an intervention for a range of gastrointestinal disorders. Though research suggests that microbial exposure may affect the gastrointestinal system, motility, and host immunity in a pediatric population, data have been inconsistent, with most prior studies being in neither a randomized nor placebo-controlled setting. The aim of this randomized, placebo-controlled study was to evaluate the efficacy of a synbiotic on increasing weekly bowel movements (WBMs) in constipated children. METHODS: Sixty-four children (3-17 years of age) were randomized to receive a synbiotic (n = 33) comprising mixed-chain length oligosaccharides and nine microbial strains, or placebo (n = 31) for 84 days. Stool microbiota was analyzed on samples collected at baseline and completion. The primary outcome was a change from baseline of WBMs in the treatment group compared to placebo. RESULTS: Treatment increased (p < 0.05) the number of WBMs in children with low baseline WBMs, despite broadly distinctive baseline microbiome signatures. Sequencing revealed that low baseline microbial richness in the treatment group significantly anticipated improvements in constipation (p = 0.00074). CONCLUSIONS: These findings suggest the potential for (i) multi-species-synbiotic interventions to improve digestive health in a pediatric population and (ii) bioinformatics-based methods to predict response to microbial interventions in children. IMPACT: Synbiotic microbial treatment improved the number of spontaneous weekly bowel movements in children compared to placebo. Intervention induced an increased abundance of bifidobacteria in children, compared to placebo. All administered probiotic species were enriched in the gut microbiome of the intervention group compared to placebo. Baseline microbial richness demonstrated potential as a predictive biomarker for response to intervention.


Asunto(s)
Probióticos , Simbióticos , Niño , Humanos , Lactante , Tracto Gastrointestinal/microbiología , Probióticos/uso terapéutico , Estreñimiento/terapia , Heces/microbiología , Método Doble Ciego
2.
Front Microbiol ; 5: 494, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25295033

RESUMEN

The important role of the gut microbiome in maintaining human health has necessitated a better understanding of the temporal dynamics of intestinal microbial communities as well as the host and environmental factors driving these dynamics. Genetics, mode of birth, infant feeding patterns, antibiotic usage, sanitary living conditions and long term dietary habits contribute to shaping the composition of the gut microbiome. This review focuses primarily on diet, as it is one of the most pivotal factors in the development of the human gut microbiome from infancy to the elderly. The infant gut microbiota is characterized by a high degree of instability, only reaching a state similar to that of adults by 2-3 years of age; consistent with the establishment of a varied solid food diet. The diet-related factors influencing the development of the infant gut microbiome include whether the child is breast or formula-fed as well as how and when solid foods are introduced. In contrast to the infant gut, the adult gut microbiome is resilient to large shifts in community structure. Several studies have shown that dietary changes induce transient fluctuations in the adult microbiome, sometimes in as little as 24 h; however, the microbial community rapidly returns to its stable state. Current knowledge of how long-term dietary habits shape the gut microbiome is limited by the lack of long-term feeding studies coupled with temporal gut microbiota characterization. However, long-term weight loss studies have been shown to alter the ratio of the Bacteroidetes and Firmicutes, the two major bacterial phyla residing in the human gastrointestinal tract. With aging, diet-related factors such as malnutrition are associated with microbiome shifts, although the cause and effect relationship between these factors has not been established. Increased pharmaceutical usage is also more prevalent in the elderly and can contribute to reduced gut microbiota stability and diversity. Foods containing prebiotic oligosaccharide components that nurture beneficial commensals in the gut community and probiotic supplements are being explored as interventions to manipulate the gut microbiome, potentially improving health status.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA