Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cardiovasc Magn Reson ; 25(1): 54, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37784080

RESUMEN

BACKGROUND: Macrophages play a pivotal role in vascular inflammation and predict cardiovascular complications. Fluorine-19 magnetic resonance imaging (19F MRI) with intravenously applied perfluorocarbon allows a background-free direct quantification of macrophage abundance in experimental vascular disease models in mice. Recently, perfluorooctyl bromide-nanoemulsion (PFOB-NE) was applied to effectively image macrophage infiltration in a pig model of myocardial infarction using clinical MRI scanners. In the present proof-of-concept approach, we aimed to non-invasively image monocyte/macrophage infiltration in response to carotid artery angioplasty in pigs using 19F MRI to assess early inflammatory response to mechanical injury. METHODS: In eight minipigs, two different types of vascular injury were conducted: a mild injury employing balloon oversize angioplasty only (BA, n = 4) and a severe injury provoked by BA in combination with endothelial denudation (BA + ECDN, n = 4). PFOB-NE was administered intravenously three days after injury followed by 1H and 19F MRI to assess vascular inflammatory burden at day six. Vascular response to mechanical injury was validated using X-ray angiography, intravascular ultrasound and immunohistology in at least 10 segments per carotid artery. RESULTS: Angioplasty was successfully induced in all eight pigs. Response to injury was characterized by positive remodeling with predominantly adventitial wall thickening and concomitant infiltration of monocytes/macrophages. No severe adverse reactions were observed following PFOB-NE administration. In vivo 19F signals were only detected in the four pigs following BA + ECDN with a robust signal-to-noise ratio (SNR) of 14.7 ± 4.8. Ex vivo analysis revealed a linear correlation of 19F SNR to local monocyte/macrophage cell density. Minimum detection limit of infiltrated monocytes/macrophages was estimated at approximately 410 cells/mm2. CONCLUSIONS: In this proof-of-concept study, 19F MRI enabled quantification of monocyte/macrophage infiltration after vascular injury with sufficient sensitivity. This may provide the opportunity to non-invasively monitor vascular inflammation with MRI in patients after angioplasty or even in atherosclerotic plaques.


Asunto(s)
Lesiones del Sistema Vascular , Humanos , Animales , Ratones , Porcinos , Porcinos Enanos , Valor Predictivo de las Pruebas , Imagen por Resonancia Magnética/métodos , Angioplastia , Inflamación/diagnóstico por imagen , Inflamación/etiología
3.
Front Physiol ; 12: 782760, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34992548

RESUMEN

Patients with acute ischemic stroke (AIS) present an increased incidence of systemic inflammatory response syndrome and release of Troponin T coinciding with cardiac dysfunction. The nature of the cardiocirculatory alterations remains obscure as models to investigate systemic interferences of the brain-heart-axis following AIS are sparse. Thus, this study aims to investigate acute cardiocirculatory dysfunction and myocardial injury in mice after reperfused AIS. Ischemic stroke was induced in mice by transient right-sided middle cerebral artery occlusion (tMCAO). Cardiac effects were investigated by electrocardiograms, 3D-echocardiography, magnetic resonance imaging (MRI), invasive conductance catheter measurements, histology, flow-cytometry, and determination of high-sensitive Troponin T (hsTnT). Systemic hemodynamics were recorded and catecholamines and inflammatory markers in circulating blood and myocardial tissue were determined by immuno-assay and flow-cytometry. Twenty-four hours following tMCAO hsTnT was elevated 4-fold compared to controls and predicted long-term survival. In parallel, systolic left ventricular dysfunction occurred with impaired global longitudinal strain, lower blood pressure, reduced stroke volume, and severe bradycardia leading to reduced cardiac output. This was accompanied by a systemic inflammatory response characterized by granulocytosis, lymphopenia, and increased levels of serum-amyloid P and interleukin-6. Within myocardial tissue, MRI relaxometry indicated expansion of extracellular space, most likely due to inflammatory edema and a reduced fluid volume. Accordingly, we found an increased abundance of granulocytes, apoptotic cells, and upregulation of pro-inflammatory cytokines within myocardial tissue following tMCAO. Therefore, reperfused ischemic stroke leads to specific cardiocirculatory alterations that are characterized by acute heart failure with reduced stroke volume, bradycardia, and changes in cardiac tissue and accompanied by systemic and local inflammatory responses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA