Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Eur J Immunol ; 53(12): e2350520, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37683186

RESUMEN

Inhibition of the co-stimulatory ligand CD40L has shown beneficial effects in many experimental models of autoimmune disease and inflammation. Here, we show that CD40L deficiency in T cells in mice causes a reduction of CD4+ T-cell activation and specifically a strong reduction in IFN-γ-producing Th1 cells. In vitro, we could not reproduce this antigen presenting cell-dependent effects, but found that T-cell CD40L affects cell death and proliferation. We identified receptor of activated C kinase, the canonical PKC binding partner and known to drive proliferation and apoptosis, as a mediator of CD40L reverse signaling. Furthermore, we found that CD40L clustering stabilizes IFN-γ mediated Th1 polarization through STAT1, a known binding partner of receptor of activated C kinase. Together this highlights the importance of both CD40L forward and reverse signaling.


Asunto(s)
Ligando de CD40 , Activación de Linfocitos , Ratones , Animales , Receptores de Cinasa C Activada , Células TH1 , Células Presentadoras de Antígenos , Antígenos CD40 , Linfocitos T CD4-Positivos
2.
Haematologica ; 108(7): 1873-1885, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-36475519

RESUMEN

The co-stimulatory CD40-CD40L dyad plays an important role in chronic inflammatory diseases associated with aging. Although CD40 is mainly expressed by immune cells, CD40 is also present on adipocytes. We aimed to delineate the role of adipocyte CD40 in the aging hematopoietic system and evaluated the effects of adipocyte CD40 deficiency on cardiometabolic diseases. Adult adipocyte CD40-deficient mice (AdiCD40KO) mice had a decrease in bone marrow hematopoietic stem cells (Lin-Sca+cKit+, LSK) and common lymphoid progenitors, which was associated with increased bone marrow adiposity and T-cell activation, along with elevated plasma corticosterone levels, a phenotype that became more pronounced with age. Atherosclerotic AdiCD40koApoE-/- (CD40AKO) mice also displayed changes in the LSK population, showing increased myeloid and lymphoid multipotent progenitors, and augmented corticosterone levels. Increased T-cell activation could be observed in bone marrow, spleen, and adipose tissue, while the numbers of B cells were decreased. Although atherosclerosis was reduced in CD40AKO mice, plaques contained more activated T cells and larger necrotic cores. Analysis of peripheral adipose tissue in a diet-induced model of obesity revealed that obese AdiCD40KO mice had increased T-cell activation in adipose tissue and lymphoid organs, but decreased weight gain and improved insulin sensitivity, along with increased fat oxidation. In conclusion, adipocyte CD40 plays an important role in maintaining immune cell homeostasis in bone marrow during aging and chronic inflammatory diseases, particularly of the lymphoid populations. Although adipocyte CD40 deficiency reduces atherosclerosis burden and ameliorates diet-induced obesity, the accompanying T-cell activation may eventually aggravate cardiometabolic diseases.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Animales , Ratones , Corticosterona/farmacología , Adipocitos , Obesidad , Inflamación , Antígenos CD40/genética , Ligando de CD40 , Hematopoyesis , Ratones Endogámicos C57BL
3.
Eur J Cell Biol ; 103(2): 151419, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38763048

RESUMEN

Nuclear receptor Nur77 plays a pivotal role in immune regulation across various tissues, influencing pro-inflammatory signaling pathways and cellular metabolism. While cellular mechanics have been implicated in inflammation, the contribution of Nur77 to these mechanical processes remains elusive. Macrophages exhibit remarkable plasticity in their morphology and mechanics, enabling them to adapt and execute essential inflammatory functions, such as navigating through inflamed tissue and pathogen engulfment. However, the precise regulatory mechanisms governing these dynamic changes in macrophage mechanics during inflammation remain poorly understood. To establish the potential correlation of Nur77 with cellular mechanics, we compared bone marrow-derived macrophages (BMDMs) from wild-type (WT) and Nur77-deficient (Nur77-KO) mice and employed cytoskeletal imaging, single-cell acoustic force spectroscopy (AFS), migration and phagocytosis assays, and RNA-sequencing. Our findings reveal that Nur77-KO BMDMs exhibit changes to their actin networks compared to WT BMDMs, which is associated with a stiffer and more rigid phenotype. Subsequent in vitro experiments validated our observations, showcasing that Nur77 deficiency leads to enhanced migration, reduced adhesion, and increased phagocytic activity. The transcriptomics data confirmed altered mechanics-related pathways in Nur77-deficient macrophage that are accompanied by a robust pro-inflammatory phenotype. Utilizing previously obtained ChIP-data, we revealed that Nur77 directly targets differentially expressed genes associated with cellular mechanics. In conclusion, while Nur77 is recognized for its role in reducing inflammation of macrophages by inhibiting the expression of pro-inflammatory genes, our study identifies a novel regulatory mechanism where Nur77 governs macrophage inflammation through the modulation of expression of genes involved in cellular mechanics. Our findings suggest that immune regulation by Nur77 may be partially mediated through alterations in cellular mechanics, highlighting a potential avenue for therapeutic targeting.


Asunto(s)
Macrófagos , Ratones Noqueados , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Animales , Macrófagos/metabolismo , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Fagocitosis , Movimiento Celular , Inflamación/metabolismo
4.
Front Immunol ; 15: 1297893, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38504977

RESUMEN

Introduction: Atherosclerosis is a lipid-driven inflammatory disease of the arterial wall, and the underlying cause of the majority of cardiovascular diseases. Recent advances in high-parametric immunophenotyping of immune cells indicate that T cells constitute the major leukocyte population in the atherosclerotic plaque. The E3 ubiquitin ligase Casitas B-lymphoma proto-oncogene-B (CBL-B) is a critical intracellular regulator that sets the threshold for T cell activation, making CBL-B a potential therapeutic target to modulate inflammation in atherosclerosis. We previously demonstrated that complete knock-out of CBL-B aggravated atherosclerosis in Apoe-/- mice, which was attributed to increased macrophage recruitment and increased CD8+ T cell activation in the plaque. Methods: To further study the T cell specific role of CBL-B in atherosclerosis, Apoe-/- CD4cre Cblb fl/fl (Cbl-bcKO) mice and Apoe-/-CD4WTCblbfl/fl littermates (Cbl-bfl/fl) were fed a high cholesterol diet for ten weeks. Results: Cbl-bcKO mice had smaller atherosclerotic lesions in the aortic arch and root compared to Cbl-bfl/fl, and a substantial increase in CD3+ T cells in the plaque. Collagen content in the plaque was decreased, while other plaque characteristics including plaque necrotic core, macrophage content, and smooth muscle cell content, remained unchanged. Mice lacking T cell CBL-B had a 1.4-fold increase in CD8+ T cells and a 1.8-fold increase in regulatory T cells in the spleen. Splenic CD4+ and CD8+ T cells had increased expression of C-X-C Motif Chemokine Receptor 3 (CXCR3) and interferon-γ (IFN-γ), indicating a T helper 1 (Th1)-like/effector CD8+ T cell-like phenotype. Conclusion: In conclusion, Cbl-bcKO mice have reduced atherosclerosis but show increased T cell accumulation in the plaque accompanied by systemic T cell activation.


Asunto(s)
Aterosclerosis , Linfoma , Placa Aterosclerótica , Animales , Ratones , Apolipoproteínas E/genética , Aterosclerosis/metabolismo , Linfocitos T CD8-positivos , Ratones Noqueados , Placa Aterosclerótica/patología , Proteínas Proto-Oncogénicas c-cbl/genética , Proteínas Proto-Oncogénicas c-cbl/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo
5.
Front Cardiovasc Med ; 10: 1171764, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37215541

RESUMEN

Background: Atherosclerosis is the underlying cause of many cardiovascular diseases, such as myocardial infarction or stroke. B cells, and their production of pro- and anti-atherogenic antibodies, play an important role in atherosclerosis. In B cells, TRAF2 and NCK-interacting Kinase (TNIK), a germinal center kinase, was shown to bind to TNF-receptor associated factor 6 (TRAF6), and to be involved in JNK and NF-κB signaling in human B cells, a pathway associated with antibody production. Objective: We here investigate the role of TNIK-deficient B cells in atherosclerosis. Results: ApoE-/-TNIKfl/fl (TNIKBWT) and ApoE-/-TNIKfl/flCD19-cre (TNIKBKO) mice received a high cholesterol diet for 10 weeks. Atherosclerotic plaque area did not differ between TNIKBKO and TNIKBWT mice, nor was there any difference in plaque necrotic core, macrophage, T cell, α-SMA and collagen content. B1 and B2 cell numbers did not change in TNIKBKO mice, and marginal zone, follicular or germinal center B cells were unaffected. Total IgM and IgG levels, as well as oxidation specific epitope (OSE) IgM and IgG levels, did not change in absence of B cell TNIK. In contrast, plasma IgA levels were decreased in TNIKBKO mice, whereas the number of IgA+ B cells in intestinal Peyer's patches increased. No effects could be detected on T cell or myeloid cell numbers or subsets. Conclusion: We here conclude that in hyperlipidemic ApoE-/- mice, B cell specific TNIK deficiency does not affect atherosclerosis.

6.
Eur Heart J Open ; 3(2): oead013, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36969380

RESUMEN

Aims: Hyperlipidemia and T cell driven inflammation are important drivers of atherosclerosis, the main underlying cause of cardiovascular disease. Here, we detailed the effects of hyperlipidemia on T cells. Methods and results: In vitro, exposure of human and murine CD4+ T cells to very low-density lipoprotein (VLDL), but not to low-density lipoprotein (LDL) resulted in upregulation of Th1 associated pathways. VLDL was taken up via a CD36-dependent pathway and resulted in membrane stiffening and a reduction in lipid rafts. To further detail this response in vivo, T cells of mice lacking the LDL receptor (LDLr), which develop a strong increase in VLDL cholesterol and triglyceride levels upon high cholesterol feeding were investigated. CD4+ T cells of hyperlipidemic Ldlr-/- mice exhibited an increased expression of the C-X-C-chemokine receptor 3 (CXCR3) and produced more interferon-γ (IFN-γ). Gene set enrichment analysis identified IFN-γ-mediated signaling as the most upregulated pathway in hyperlipidemic T cells. However, the classical Th1 associated transcription factor profile with strong upregulation of Tbet and Il12rb2 was not observed. Hyperlipidemia did not affect levels of the CD4+ T cell's metabolites involved in glycolysis or other canonical metabolic pathways but enhanced amino acids levels. However, CD4+ T cells of hyperlipidemic mice showed increased cholesterol accumulation and an increased arachidonic acid (AA) to docosahexaenoic acid (DHA) ratio, which was associated with inflammatory T cell activation. Conclusions: Hyperlipidemia, and especially its VLDL component induces an atypical Th1 response in CD4+ T cells. Underlying mechanisms include CD36 mediated uptake of VLDL, and an altered AA/DHA ratio.

7.
EBioMedicine ; 93: 104680, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37356205

RESUMEN

BACKGROUND: Circadian disturbance (CD) is the consequence of a mismatch between endogenous circadian rhythms, behaviour, and/or environmental cycles, and frequently occurs during shift work. Shift work has been associated with elevated risk for atherosclerotic cardiovascular disease (asCVD) in humans, but evidence for the effectiveness of prevention strategies is lacking. METHODS: Here, we applied time-restricted feeding (TRF) as a strategy to counteract atherosclerosis development during CD in female APOE∗3-Leiden.CETP mice, a well-established model for humanized lipoprotein metabolism. Control groups were subjected to a fixed 12:12 h light-dark cycle, while CD groups were subjected to 6-h phase advancement every 3 days. Groups had either ad libitum (AL) access to food or were subjected to TRF with restricted food access to the dark phase. FINDINGS: TRF did not prevent the increase in the relative abundance of circulating inflammatory monocytes and elevation of (postprandial) plasma triglycerides during CD. Nonetheless, TRF reduced atherosclerotic lesion size and prevented an elevation in macrophage content of atherosclerotic lesions during CD, while it increased the relative abundance of anti-inflammatory monocytes, prevented activation of T cells, and lowered plasma total cholesterol levels and markers of hepatic cholesterol synthesis. These effects were independent of total food intake. INTERPRETATION: We propose that time restricted eating could be a promising strategy for the primary prevention of asCVD risk in shift workers, which warrants future study in humans. FUNDING: This work was funded by the Novo Nordisk Foundation, the Netherlands Ministry of Social Affairs and Employment, Amsterdam Cardiovascular Sciences, and the Dutch Heart Foundation.


Asunto(s)
Aterosclerosis , Hipercolesterolemia , Humanos , Ratones , Femenino , Animales , Hipercolesterolemia/complicaciones , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Aterosclerosis/metabolismo , Fotoperiodo , Ritmo Circadiano/fisiología , Colesterol , Proteínas de Transferencia de Ésteres de Colesterol
8.
Front Cardiovasc Med ; 7: 106, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32582770

RESUMEN

Chronic low-grade inflammation drives atherosclerosis and despite optimal pharmacological treatment of classical cardiovascular risk factors, one third of the patients with atherosclerotic cardiovascular disease has elevated inflammatory biomarkers. Additional anti-inflammatory strategies to target this residual inflammatory cardiovascular risk are therefore required. T-cells are a dominant cell type in human atherosclerotic lesions. Modulation of T-cell activation is therefore a potential strategy to target inflammation in atherosclerosis. Ubiquitination is an important regulatory mechanism of T-cell activation and several E3 ubiquitin ligases, including casitas B-lineage lymphoma proto-oncogene B (Cbl-B), itchy homolog (Itch), and gene related to anergy in lymphocytes (GRAIL), function as a natural brake on T-cell activation. In this review we discuss recent insights on the role of Cbl-B, Itch, and GRAIL in atherosclerosis and explore the therapeutic potential of these E3 ubiquitin ligases in cardiovascular medicine.

9.
Cells ; 9(4)2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32316189

RESUMEN

The sodium taurocholate cotransporting polypeptide (NTCP) is expressed at the basolateral membrane of hepatocytes, where it mediates the uptake of conjugated bile acids and forms the hepatocyte entry receptor for the hepatitis B and D virus. Here, we aimed to identify novel protein-protein interactions that could play a role in the regulation of NTCP. To this end, NTCP was precipitated from HA-tagged hNTCP-expressing HepG2 cells, and chloride channel CLIC-like 1 (CLCC1) and stomatin were identified as interacting proteins by mass spectrometry. Interaction was confirmed by co-immunoprecipitation. NTCP, CLCC1 and stomatin were found at the plasma membrane in lipid rafts, as demonstrated by a combination of immunofluorescence, cell surface biotinylation and isolation of detergent-resistant membranes. Neither CLCC1 overexpression nor its knockdown had an effect on NTCP function. However, both stomatin overexpression and knockdown increased NTCP-mediated taurocholate uptake while NTCP abundance at the plasma membrane was only increased in stomatin depleted cells. These findings identify stomatin as an interactor of NTCP and show that the interaction modulates bile salt transport.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Transporte Biológico Activo/genética , Hepatocitos/metabolismo , Hígado/metabolismo , Proteínas de la Membrana/metabolismo , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Simportadores/metabolismo , Ácido Taurocólico/metabolismo , Línea Celular Tumoral , Membrana Celular/metabolismo , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Cromatografía Liquida , Técnicas de Silenciamiento del Gen , Humanos , Microdominios de Membrana/metabolismo , Proteínas de la Membrana/genética , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Unión Proteica , Simportadores/genética , Espectrometría de Masas en Tándem
10.
Thyroid ; 29(9): 1336-1343, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31303139

RESUMEN

Background: Inflammation is associated with marked changes in cellular thyroid hormone (TH) metabolism in triiodothyronine (T3) target organs. In the hypothalamus, type 2 deiodinase (D2), the main T3 producing enzyme, increases upon inflammation, leading to an increase in local T3 availability, which in turn decreases thyrotropin releasing hormone expression in the paraventricular nucleus. Type 3 deiodinase (D3), the T3 inactivating enzyme, decreases during inflammation, which might also contribute to the increased T3 availability in the hypothalamus. While it is known that D2 is regulated by nuclear factor κB (NF-κB) during inflammation, the underlying mechanisms of D3 regulation are unknown. Therefore, the aim of the present study was to investigate inflammation-induced D3 regulation using in vivo and in vitro models. Methods: Mice were injected with a sublethal dose of bacterial endotoxin (lipopolysaccharide [LPS]) to induce a systemic acute-phase response. A human neuroblastoma (SK-N-AS) cell line was used to test the involvement of the thyroid hormone receptor alpha 1 (TRα1) as well as the activator protein-1 (AP-1) and NF-κB inflammatory pathways in the inflammation-induced decrease of D3. Results: D3 expression in the hypothalamus was decreased 24 hours after LPS injection in mice. This decrease was similar in mice lacking the TRα. Incubation of SK-N-AS cells with LPS robustly decreased both D3 mRNA expression and activity. This led to increased intracellular T3 concentrations. The D3 decrease was prevented when NF-κB or AP-1 was inhibited. TRα1 mRNA expression decreased in SK-N-AS cells incubated with LPS, but knockdown of the TRα in SK-N-AS cells did not prevent the LPS-induced D3 decrease. Conclusions: We conclude that the inflammation-induced D3 decrease in the hypothalamus is mediated by the inflammatory pathways NF-κB and AP-1, but not TRα1. Furthermore, the observed decrease modulates intracellular T3 concentrations. Our results suggest a concerted action of inflammatory modulators to regulate both hypothalamic D2 and D3 activities to increase the local TH concentrations.


Asunto(s)
Hipotálamo/enzimología , Inflamación/metabolismo , Yoduro Peroxidasa/genética , Animales , Línea Celular Tumoral , Regulación hacia Abajo , Femenino , Humanos , Yoduro Peroxidasa/fisiología , Lipopolisacáridos , Masculino , Ratones , FN-kappa B/fisiología , ARN Mensajero/análisis , Transducción de Señal , Receptores alfa de Hormona Tiroidea/fisiología , Factor de Transcripción AP-1/fisiología , Yodotironina Deyodinasa Tipo II
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA