Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 141(19): 2330-2342, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-36706356

RESUMEN

Familial forms of the severe immunoregulatory disease hemophagocytic lymphohistiocytosis (HLH) arise from biallelic mutations in the PRF1, UNC13D, STXBP2, and STX11 genes. Early and accurate diagnosis of the disease is important to determine the most appropriate treatment option, including potentially curative stem cell transplantation. The diagnosis of familial HLH (FHL) is traditionally based on finding biallelic mutations in patients with HLH symptoms and reduced natural killer (NK)-cell cytotoxicity. However, patients often have a low NK-cell count or receive immunosuppressive therapies that may render the NK-cell cytotoxicity assay unreliable. Furthermore, to fully understand the nature of a disease it is critical to directly assess the effect of mutations on cellular function; this will help to avoid instances in which carriers of innocuous mutations may be recommended for invasive procedures including transplantation. To overcome this diagnostic problem, we have developed a rapid and robust method that takes advantage of the functional equivalence of the human and mouse orthologues of PRF1, UNC13D, STX11, and STXBP2 proteins. By knocking out endogenous mouse genes in CD8+ T cells and simultaneously replacing them with their mutated human orthologues, we can accurately assess the effect of mutations on cell function. The wide dynamic range of this novel system allowed us to understand the basis of, otherwise cryptic, cases of FHL or HLH and, in some instances, to demonstrate that previously reported mutations are unlikely to cause FHL. This novel approach provides valuable new information to enable more accurate diagnosis and treatment of patients with HLH or FHL who inherit mutations of undetermined pathogenicity.


Asunto(s)
Linfohistiocitosis Hemofagocítica , Humanos , Animales , Ratones , Linfohistiocitosis Hemofagocítica/diagnóstico , Linfohistiocitosis Hemofagocítica/genética , Proteínas Citotóxicas Formadoras de Poros , Perforina/genética , Genotipo , Mutación , Fenotipo , Proteínas de la Membrana/genética , Proteínas Munc18/genética
2.
J Clin Immunol ; 44(1): 38, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38165470

RESUMEN

BACKGROUND: X-linked reticular pigmentary disorder (XLPDR) is a rare condition characterized by skin hyperpigmentation, ectodermal features, multiorgan inflammation, and recurrent infections. All probands identified to date share the same intronic hemizygous POLA1 hypomorphic variant (NM_001330360.2(POLA1):c.1393-354A > G) on the X chromosome. Previous studies have supported excessive type 1 interferon (IFN) inflammation and natural killer (NK) cell dysfunction in disease pathogenesis. Common null polymorphisms in filaggrin (FLG) gene underlie ichthyosis vulgaris and atopic predisposition. CASE: A 9-year-old boy born to non-consanguineous parents developed eczema with reticular skin hyperpigmentation in early infancy. He suffered recurrent chest infections with chronic cough, clubbing, and asthma, moderate allergic rhinoconjunctivitis with keratitis, multiple food allergies, and vomiting with growth failure. Imaging demonstrated bronchiectasis, while gastroscopy identified chronic eosinophilic gastroduodenitis. Interestingly, growth failure and bronchiectasis improved over time without specific treatment. METHODS: Whole-genome sequencing (WGS) using Illumina short-read sequencing was followed by both manual and orthogonal automated bioinformatic analyses for single-nucleotide variants, small insertions/deletions (indels), and larger copy number variations. NK cell cytotoxic function was assessed using 51Cr release and degranulation assays. The presence of an interferon signature was investigated using a panel of six interferon-stimulated genes (ISGs) by QPCR. RESULTS: WGS identified a de novo hemizygous intronic variant in POLA1 (NM_001330360.2(POLA1):c.1393-354A > G) giving a diagnosis of XLPDR, as well as a heterozygous nonsense FLG variant (NM_002016.2(FLG):c.441del, NP_0020.1:p.(Arg151Glyfs*43)). Compared to healthy controls, the IFN signature was elevated although the degree moderated over time with the improvement in his chest disease. NK cell functional studies showed normal cytotoxicity and degranulation. CONCLUSION: This patient had multiple atopic manifestations affecting eye, skin, chest, and gut, complicating the presentation of XLPDR. This highlights that common FLG polymorphisms should always be considered when assessing genotype-phenotype correlations of other genetic variation in patients with atopic symptoms. Additionally, while the patient exhibited an enhanced IFN signature, he does not have an NK cell defect, suggesting this may not be a constant feature of XLPDR.


Asunto(s)
Bronquiectasia , Dermatitis Atópica , Hiperpigmentación , Masculino , Humanos , Niño , Variaciones en el Número de Copia de ADN , Proteínas Filagrina , Inflamación , Interferones
3.
Blood ; 139(12): 1833-1849, 2022 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-35081253

RESUMEN

Niemann-Pick disease type C1 (NP-C1) is a rare lysosomal storage disorder resulting from mutations in an endolysosomal cholesterol transporter, NPC1. Despite typically presenting with pronounced neurological manifestations, NP-C1 also resembles long-term congenital immunodeficiencies that arise from impairment of cytotoxic T lymphocyte (CTL) effector function. CTLs kill their targets through exocytosis of the contents of lysosome-like secretory cytotoxic granules (CGs) that store and ultimately release the essential pore-forming protein perforin and proapoptotic serine proteases, granzymes, into the synapse formed between the CTL and target cell. We discovered that NPC1 deficiency increases CG lipid burden, impairs autophagic flux through stalled trafficking of the transcription factor EB (TFEB), and dramatically reduces CTL cytotoxicity. Using a variety of immunological and cell biological techniques, we found that the cytotoxic defect arises specifically from impaired perforin pore formation. We demonstrated defects of CTL function of varying severity in patients with NP-C1, with the greatest losses of function associated with the most florid and/or earliest disease presentations. Remarkably, perforin function and CTL cytotoxicity were restored in vitro by promoting lipid clearance with therapeutic 2-hydroxypropyl-ß-cyclodextrin; however, restoration of autophagy through TFEB overexpression was ineffective. Overall, our study revealed that NPC1 deficiency has a deleterious impact on CTL (but not natural killer cell) cytotoxicity that, in the long term, may predispose patients with NP-C1 to atypical infections and impaired immune surveillance more generally.


Asunto(s)
Enfermedad de Niemann-Pick Tipo A , Enfermedad de Niemann-Pick Tipo C , Colesterol/metabolismo , Granzimas , Humanos , Enfermedad de Niemann-Pick Tipo C/metabolismo , Perforina/genética , Linfocitos T Citotóxicos/metabolismo
4.
Nature ; 549(7670): 101-105, 2017 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-28813417

RESUMEN

Cancer cells exploit the expression of the programmed death-1 (PD-1) ligand 1 (PD-L1) to subvert T-cell-mediated immunosurveillance. The success of therapies that disrupt PD-L1-mediated tumour tolerance has highlighted the need to understand the molecular regulation of PD-L1 expression. Here we identify the uncharacterized protein CMTM6 as a critical regulator of PD-L1 in a broad range of cancer cells, by using a genome-wide CRISPR-Cas9 screen. CMTM6 is a ubiquitously expressed protein that binds PD-L1 and maintains its cell surface expression. CMTM6 is not required for PD-L1 maturation but co-localizes with PD-L1 at the plasma membrane and in recycling endosomes, where it prevents PD-L1 from being targeted for lysosome-mediated degradation. Using a quantitative approach to profile the entire plasma membrane proteome, we find that CMTM6 displays specificity for PD-L1. Notably, CMTM6 depletion decreases PD-L1 without compromising cell surface expression of MHC class I. CMTM6 depletion, via the reduction of PD-L1, significantly alleviates the suppression of tumour-specific T cell activity in vitro and in vivo. These findings provide insights into the biology of PD-L1 regulation, identify a previously unrecognized master regulator of this critical immune checkpoint and highlight a potential therapeutic target to overcome immune evasion by tumour cells.


Asunto(s)
Antígeno B7-H1/biosíntesis , Antígeno B7-H1/metabolismo , Proteínas de la Membrana/metabolismo , Neoplasias/inmunología , Neoplasias/metabolismo , Animales , Antígeno B7-H1/inmunología , Sistemas CRISPR-Cas , Línea Celular , Membrana Celular/metabolismo , Endosomas/metabolismo , Femenino , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Lisosomas/metabolismo , Ratones , Proteolisis , Proteoma/metabolismo , Especificidad por Sustrato , Linfocitos T/inmunología , Linfocitos T/metabolismo , Escape del Tumor/inmunología
5.
Faraday Discuss ; 232(0): 236-255, 2021 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-34545865

RESUMEN

Perforin is a pore forming protein used by cytotoxic T lymphocytes to remove cancerous or virus-infected cells during the immune response. During the response, the lymphocyte membrane becomes refractory to perforin function by accumulating densely ordered lipid rafts and externalizing negatively charged lipid species. The dense membrane packing lowers the capacity of perforin to bind, and the negatively charged lipids scavenge any residual protein before pore formation. Using atomic force microscopy on model membrane systems, we here provide insight into the molecular basis of perforin lipid specificity.


Asunto(s)
Lípidos , Linfocitos T Citotóxicos , Perforina , Proteínas Citotóxicas Formadoras de Poros
6.
Immunity ; 34(6): 879-92, 2011 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-21658975

RESUMEN

Cytotoxic lymphocyte-mediated apoptosis is dependent on the delivery of perforin to secretory granules and its ability to form calcium-dependent pores in the target cell after granule exocytosis. It is unclear how cytotoxic lymphocytes synthesize and store perforin without incurring damage or death. We discovered that the extreme C terminus of perforin was essential for rapid trafficking from the endoplasmic reticulum to the Golgi compartment. Substitution of the C-terminal tryptophan residue resulted in retention of perforin in the ER followed by calcium-dependent toxic activity that eliminated host cells. We also found that N-linked glycosylation of perforin was critical for transport from the Golgi to secretory granules. Overall, an intact C terminus and N-linked glycosylation provide accurate and efficient export of perforin from the endoplasmic reticulum to the secretory granules and are critical for cytotoxic lymphocyte survival.


Asunto(s)
Movimiento Celular , Exocitosis , Perforina/inmunología , Polisacáridos/inmunología , Linfocitos T Citotóxicos/inmunología , Animales , Autólisis/inmunología , Línea Celular , Retículo Endoplásmico/inmunología , Glicosilación , Humanos , Ratones , Ratones Noqueados , Mutación , Perforina/deficiencia , Ratas
7.
Semin Cell Dev Biol ; 72: 117-123, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28757431

RESUMEN

Cytotoxic lymphocytes play a key role in immune homeostasis through elimination of virally-infected and transformed target cells. They do this by employing the potent pore-forming protein, perforin, a molecule that permits cytotoxic proteases, such as granzyme B, to enter the target cell cytoplasm. The synergistic activities of perforin and granzymes bring about the destruction of target cells in a process that is now more clearly understood as a result of structural and cellular biology. These data are helping the development of new classes of immunosuppressive molecules for use in treating immune driven disease and in enhancing the success of transplant therapies. This review focuses on structural and biological aspects of perforin function.


Asunto(s)
Sinapsis Inmunológicas/inmunología , Modelos Inmunológicos , Perforina/inmunología , Linfocitos T Citotóxicos/inmunología , Animales , Cristalografía por Rayos X , Granzimas/inmunología , Granzimas/metabolismo , Humanos , Modelos Moleculares , Perforina/química , Perforina/metabolismo , Dominios Proteicos , Linfocitos T Citotóxicos/metabolismo
8.
EMBO Rep ; 18(10): 1775-1785, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28808112

RESUMEN

Perforin is a highly cytotoxic pore-forming protein essential for immune surveillance by cytotoxic lymphocytes. Prior to delivery to target cells by exocytosis, perforin is stored in acidic secretory granules where it remains functionally inert. However, how cytotoxic lymphocytes remain protected from their own perforin prior to its export to secretory granules, particularly in the Ca2+-rich endoplasmic reticulum, remains unknown. Here, we show that N-linked glycosylation of the perforin C-terminus at Asn549 within the endoplasmic reticulum inhibits oligomerisation of perforin monomers and thus protects the host cell from premature pore formation. Subsequent removal of this glycan occurs through proteolytic processing of the C-terminus within secretory granules and is imperative for perforin activation prior to secretion. Despite evolutionary conservation of the C-terminus, we found that processing is carried out by multiple proteases, which we attribute to the unstructured and exposed nature of the region. In sum, our studies reveal a post-translational regulatory mechanism essential for maintaining perforin in an inactive state until its secretion from the inhibitory acidic environment of the secretory granule.


Asunto(s)
Sinapsis Inmunológicas , Perforina/química , Perforina/metabolismo , Animales , Gránulos Citoplasmáticos/metabolismo , Retículo Endoplásmico/metabolismo , Glicosilación , Humanos , Interleucina-2/inmunología , Células Asesinas Naturales/inmunología , Glicoproteínas de Membrana , Ratones , Perforina/genética , Procesamiento Proteico-Postraduccional , Proteolisis
9.
Immunity ; 30(5): 684-95, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19446473

RESUMEN

Perforin, a pore-forming protein secreted by cytotoxic lymphocytes, is indispensable for destroying virus-infected cells and for maintaining immune homeostasis. Perforin polymerizes into transmembrane channels that inflict osmotic stress and facilitate target cell uptake of proapoptotic granzymes. Despite this, the mechanism through which perforin monomers self-associate remains unknown. Our current study establishes the molecular basis for perforin oligomerization and pore assembly. We show that after calcium-dependent membrane binding, direct ionic attraction between the opposite faces of adjacent perforin monomers was necessary for pore formation. By using mutagenesis, we identified the opposing charges on residues Arg213 (positive) and Glu343 (negative) to be critical for intermolecular interaction. Specifically, disrupting this interaction had no effect on perforin synthesis, folding, or trafficking in the killer cell, but caused a marked kinetic defect of oligomerization at the target cell membrane, severely disrupting lysis and granzyme B-induced apoptosis. Our study provides important insights into perforin's mechanism of action.


Asunto(s)
Complemento C8/metabolismo , Perforina/metabolismo , Animales , Apoptosis/fisiología , Línea Celular Tumoral , Membrana Celular/metabolismo , Permeabilidad de la Membrana Celular/fisiología , Estructuras Celulares/metabolismo , Eritrocitos/fisiología , Granzimas/metabolismo , Humanos , Células Jurkat , Mutación/genética , Perforina/química , Perforina/genética , Porosidad , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ovinos
10.
PLoS Biol ; 13(2): e1002049, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25654333

RESUMEN

Membrane attack complex/perforin-like (MACPF) proteins comprise the largest superfamily of pore-forming proteins, playing crucial roles in immunity and pathogenesis. Soluble monomers assemble into large transmembrane pores via conformational transitions that remain to be structurally and mechanistically characterised. Here we present an 11 Å resolution cryo-electron microscopy (cryo-EM) structure of the two-part, fungal toxin Pleurotolysin (Ply), together with crystal structures of both components (the lipid binding PlyA protein and the pore-forming MACPF component PlyB). These data reveal a 13-fold pore 80 Å in diameter and 100 Å in height, with each subunit comprised of a PlyB molecule atop a membrane bound dimer of PlyA. The resolution of the EM map, together with biophysical and computational experiments, allowed confident assignment of subdomains in a MACPF pore assembly. The major conformational changes in PlyB are a ∼70° opening of the bent and distorted central ß-sheet of the MACPF domain, accompanied by extrusion and refolding of two α-helical regions into transmembrane ß-hairpins (TMH1 and TMH2). We determined the structures of three different disulphide bond-trapped prepore intermediates. Analysis of these data by molecular modelling and flexible fitting allows us to generate a potential trajectory of ß-sheet unbending. The results suggest that MACPF conformational change is triggered through disruption of the interface between a conserved helix-turn-helix motif and the top of TMH2. Following their release we propose that the transmembrane regions assemble into ß-hairpins via top down zippering of backbone hydrogen bonds to form the membrane-inserted ß-barrel. The intermediate structures of the MACPF domain during refolding into the ß-barrel pore establish a structural paradigm for the transition from soluble monomer to pore, which may be conserved across the whole superfamily. The TMH2 region is critical for the release of both TMH clusters, suggesting why this region is targeted by endogenous inhibitors of MACPF function.


Asunto(s)
Membrana Celular/química , Complejo de Ataque a Membrana del Sistema Complemento/química , Proteínas Fúngicas/química , Proteínas Hemolisinas/química , Pleurotus/química , Proteínas Recombinantes de Fusión/química , Animales , Complejo de Ataque a Membrana del Sistema Complemento/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , Eritrocitos/química , Eritrocitos/citología , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expresión Génica , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Modelos Moleculares , Unión Proteica , Pliegue de Proteína , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Ovinos
12.
Nat Rev Immunol ; 6(12): 940-52, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17124515

RESUMEN

The granule exocytosis pathway of cytotoxic lymphocytes is crucial for immune surveillance and homeostasis. The trafficking of granule components, including the membrane-disruptive protein perforin, to the immunological synapse leads to the delivery of granule proteases (granzymes) into the target cell and its destruction through apoptosis. Several independent molecular abnormalities associated with defects of either granule trafficking or perforin function can cause cytotoxic lymphocyte dysfunction. In humans, inherited perforin mutations result in severe immune dysregulation that manifests as familial haemophagocytic lymphohistiocytosis. This Review describes recent progress in defining the structure, function, biochemistry and cell biology of perforin.


Asunto(s)
Exocitosis , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/fisiología , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/fisiología , Animales , Muerte Celular/genética , Exocitosis/genética , Homeostasis/inmunología , Humanos , Glicoproteínas de Membrana/genética , Ratones , Mutación , Perforina , Polimorfismo Genético , Proteínas Citotóxicas Formadoras de Poros/genética , Estructura Terciaria de Proteína
13.
J Biol Chem ; 290(42): 25213-26, 2015 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-26306037

RESUMEN

Natural killer cells and cytotoxic T-lymphocytes deploy perforin and granzymes to kill infected host cells. Perforin, secreted by immune cells, binds target membranes to form pores that deliver pro-apoptotic granzymes into the target cell. A crucial first step in this process is interaction of its C2 domain with target cell membranes, which is a calcium-dependent event. Some aspects of this process are understood, but many molecular details remain unclear. To address this, we investigated the mechanism of Ca(2+) and lipid binding to the C2 domain by NMR spectroscopy and x-ray crystallography. Calcium titrations, together with dodecylphosphocholine micelle experiments, confirmed that multiple Ca(2+) ions bind within the calcium-binding regions, activating perforin with respect to membrane binding. We have also determined the affinities of several of these binding sites and have shown that this interaction causes a significant structural rearrangement in CBR1. Thus, it is proposed that Ca(2+) binding at the weakest affinity site triggers changes in the C2 domain that facilitate its interaction with lipid membranes.


Asunto(s)
Calcio/metabolismo , Lípidos de la Membrana/metabolismo , Perforina/metabolismo , Fosforilcolina/análogos & derivados , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Ratones , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Perforina/química , Perforina/genética , Fosforilcolina/metabolismo , Conformación Proteica , Homología de Secuencia de Aminoácido
14.
J Virol ; 89(15): 7991-8002, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26018154

RESUMEN

UNLABELLED: There are 3 to 4 million new hepatitis C virus (HCV) infections annually around the world, but no vaccine is available. Robust T-cell mediated responses are necessary for effective clearance of the virus, and DNA vaccines result in a cell-mediated bias. Adjuvants are often required for effective vaccination, but during natural lytic viral infections damage-associated molecular patterns (DAMPs) are released, which act as natural adjuvants. Hence, a vaccine that induces cell necrosis and releases DAMPs will result in cell-mediated immunity (CMI), similar to that resulting from natural lytic viral infection. We have generated a DNA vaccine with the ability to elicit strong CMI against the HCV nonstructural (NS) proteins (3, 4A, 4B, and 5B) by encoding a cytolytic protein, perforin (PRF), and the antigens on a single plasmid. We examined the efficacy of the vaccines in C57BL/6 mice, as determined by gamma interferon enzyme-linked immunosorbent spot assay, cell proliferation studies, and intracellular cytokine production. Initially, we showed that encoding the NS4A protein in a vaccine which encoded only NS3 reduced the immunogenicity of NS3, whereas including PRF increased NS3 immunogenicity. In contrast, the inclusion of NS4A increased the immunogenicity of the NS3, NS4B, andNS5B proteins, when encoded in a DNA vaccine that also encoded PRF. Finally, vaccines that also encoded PRF elicited similar levels of CMI against each protein after vaccination with DNA encoding NS3, NS4A, NS4B, and NS5B compared to mice vaccinated with DNA encoding only NS3 or NS4B/5B. Thus, we have developed a promising "multiantigen" vaccine that elicits robust CMI. IMPORTANCE: Since their development, vaccines have reduced the global burden of disease. One strategy for vaccine development is to use commercially viable DNA technology, which has the potential to generate robust immune responses. Hepatitis C virus causes chronic liver infection and is a leading cause of liver cancer. To date, no vaccine is currently available, and treatment is costly and often results in side effects, limiting the number of patients who are treated. Despite recent advances in treatment, prevention remains the key to efficient control and elimination of this virus. Here, we describe a novel DNA vaccine against hepatitis C virus that is capable of inducing robust cell-mediated immune responses in mice and is a promising vaccine candidate for humans.


Asunto(s)
Hepacivirus/inmunología , Hepatitis C/inmunología , Linfocitos T/inmunología , Vacunas de ADN/inmunología , Vacunas contra Hepatitis Viral/inmunología , Animales , Anticuerpos Antivirales/inmunología , Femenino , Hepacivirus/genética , Hepatitis C/virología , Humanos , Inmunidad Celular , Inmunización , Masculino , Ratones , Ratones Endogámicos C57BL , Vacunas de ADN/administración & dosificación , Vacunas de ADN/genética , Vacunas contra Hepatitis Viral/administración & dosificación , Vacunas contra Hepatitis Viral/genética , Proteínas no Estructurales Virales/administración & dosificación , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/inmunología
15.
J Immunol ; 193(11): 5744-50, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25348626

RESUMEN

Cytotoxic lymphocytes destroy pathogen-infected and transformed cells through the cytotoxic granule exocytosis death pathway, which is dependent on the delivery of proapoptotic granzymes into the target cell cytosol by the pore-forming protein, perforin. Despite the importance of mouse models in understanding the role of cytotoxic lymphocytes in immune-mediated disease and their role in cancer immune surveillance, no reliable intracellular detection method exists for mouse perforin. Consequently, rapid, flow-based assessment of cytotoxic potential has been problematic, and complex assays of function are generally required. In this study, we have developed a novel method for detecting perforin in primary mouse cytotoxic T lymphocytes by immunofluorescence and flow cytometry. We used this new technique to validate perforin colocalization with granzyme B in cytotoxic granules polarized to the immunological synapse, and to assess the expression of perforin in cytotoxic T lymphocytes at various stages of activation. The sensitivity of this technique also allowed us to distinguish perforin levels in Prf1(+/+) and Prf1(+/-) mice. This new methodology will have broad applications and contribute to advances within the fields of lymphocyte biology, infectious disease, and cancer.


Asunto(s)
Granzimas/metabolismo , Sinapsis Inmunológicas/metabolismo , Espacio Intracelular/metabolismo , Perforina/metabolismo , Linfocitos T Citotóxicos/inmunología , Animales , Separación Celular , Células Cultivadas , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Perforina/genética , Transporte de Proteínas
16.
Nature ; 468(7322): 447-51, 2010 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-21037563

RESUMEN

Natural killer cells and cytotoxic T lymphocytes accomplish the critically important function of killing virus-infected and neoplastic cells. They do this by releasing the pore-forming protein perforin and granzyme proteases from cytoplasmic granules into the cleft formed between the abutting killer and target cell membranes. Perforin, a 67-kilodalton multidomain protein, oligomerizes to form pores that deliver the pro-apoptopic granzymes into the cytosol of the target cell. The importance of perforin is highlighted by the fatal consequences of congenital perforin deficiency, with more than 50 different perforin mutations linked to familial haemophagocytic lymphohistiocytosis (type 2 FHL). Here we elucidate the mechanism of perforin pore formation by determining the X-ray crystal structure of monomeric murine perforin, together with a cryo-electron microscopy reconstruction of the entire perforin pore. Perforin is a thin 'key-shaped' molecule, comprising an amino-terminal membrane attack complex perforin-like (MACPF)/cholesterol dependent cytolysin (CDC) domain followed by an epidermal growth factor (EGF) domain that, together with the extreme carboxy-terminal sequence, forms a central shelf-like structure. A C-terminal C2 domain mediates initial, Ca(2+)-dependent membrane binding. Most unexpectedly, however, electron microscopy reveals that the orientation of the perforin MACPF domain in the pore is inside-out relative to the subunit arrangement in CDCs. These data reveal remarkable flexibility in the mechanism of action of the conserved MACPF/CDC fold and provide new insights into how related immune defence molecules such as complement proteins assemble into pores.


Asunto(s)
Membrana Celular/metabolismo , Linfocitos/metabolismo , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Animales , Colesterol/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , Factor de Crecimiento Epidérmico/química , Granzimas/metabolismo , Humanos , Ratones , Modelos Moleculares , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/ultraestructura , Estructura Terciaria de Proteína
18.
Immunol Cell Biol ; 93(6): 575-80, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25776844

RESUMEN

The production and delivery of functional perforin (PRF; PRF1 gene) by cytotoxic lymphocytes maintains immune homeostasis and tumour immune surveillance. In humans, inheritance of the common PRF1 polymorphism, p.A91V, (c.272C>T) found in 8-9% of the Caucasian population, with another mutated allele resulting in reduced PRF function or trafficking, has been shown to result in hyperinflammatory diseases and/or haematological cancers. In this study, we sought to investigate the function of p.A91V on a wild-type (WT) perforin background. We first developed an assay that distinguishes the relative levels of transcription of individual PRF1 alleles, including p.A91V. The p.A91V allele was seen to be expressed at similar levels as the WT allele in primary human natural killer (NK) cells, ruling out that allelic expression imbalance influenced their function. We then demonstrated that the p.A91V mutation results in protein misfolding and an appreciable reduction in NK-cell cytotoxicity in healthy carriers of p.A91V. We propose that this level of cytotoxic dysfunction may readily account for the predisposition to immune-mediated disease in individuals homozygous for p.A91V. Also, the fact that monoallelic mutations of PRF1 decrease NK-cell cytotoxicity should be considered in individuals presenting with the manifestations of immune deficiency states that impinge on NK-cell cytotoxicity.


Asunto(s)
Citotoxicidad Inmunológica/genética , Heterocigoto , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Mutación , Perforina/genética , Alelos , Sustitución de Aminoácidos , Codón , Expresión Génica , Genes Dominantes , Voluntarios Sanos , Humanos , Perforina/química , Polimorfismo de Nucleótido Simple , Pliegue de Proteína , ARN Mensajero/genética
19.
Blood ; 121(14): 2659-68, 2013 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-23377437

RESUMEN

Cytotoxic lymphocytes serve a key role in immune homeostasis by eliminating virus-infected and transformed target cells through the perforin-dependent delivery of proapoptotic granzymes. However, the mechanism of granzyme entry into cells remains unresolved. Using biochemical approaches combined with time-lapse microscopy of human primary cytotoxic lymphocytes engaging their respective targets, we defined the time course of perforin pore formation in the context of the physiological immune synapse. We show that, on recognition of targets, calcium influx into the lymphocyte led to perforin exocytosis and target cell permeabilization in as little as 30 seconds. Within the synaptic cleft, target cell permeabilization by perforin resulted in the rapid diffusion of extracellular milieu-derived granzymes. Repair of these pores was initiated within 20 seconds and was completed within 80 seconds, thus limiting granzyme diffusion. Remarkably, even such a short time frame was sufficient for the delivery of lethal amounts of granzymes into the target cell. Rapid initiation of apoptosis was evident from caspase-dependent target cell rounding within 2 minutes of perforin permeabilization. This study defines the final sequence of events controlling cytotoxic lymphocyte immune defense, in which perforin pores assemble on the target cell plasma membrane, ensuring efficient delivery of lethal granzymes.


Asunto(s)
Apoptosis/inmunología , Membrana Celular/inmunología , Granzimas/inmunología , Células Asesinas Naturales/inmunología , Proteínas Citotóxicas Formadoras de Poros/inmunología , Linfocitos T Citotóxicos/inmunología , Animales , Membrana Celular/metabolismo , Complejo de Ataque a Membrana del Sistema Complemento/inmunología , Complejo de Ataque a Membrana del Sistema Complemento/metabolismo , Endocitosis/inmunología , Exocitosis/inmunología , Granzimas/metabolismo , Células HeLa , Humanos , Células Jurkat , Células Asesinas Naturales/citología , Células Asesinas Naturales/metabolismo , Ratones , Perforina , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Linfocitos T Citotóxicos/citología , Linfocitos T Citotóxicos/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA