Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Mol Sci ; 21(22)2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-33203140

RESUMEN

Complex neuropsychiatric-cardiac syndromes can be genetically determined. For the first time, the authors present a syndromal form of short QT syndrome in a 34-year-old German male patient with extracardiac features with predominant psychiatric manifestation, namely a severe form of secondary high-functioning autism spectrum disorder (ASD), along with affective and psychotic exacerbations, and severe dental enamel defects (with rapid wearing off his teeth) due to a heterozygous loss-of-function mutation in the CACNA1C gene (NM_000719.6: c.2399A > C; p.Lys800Thr). This mutation was found only once in control databases; the mutated lysine is located in the Cav1.2 calcium channel, is highly conserved during evolution, and is predicted to affect protein function by most pathogenicity prediction algorithms. L-type Cav1.2 calcium channels are widely expressed in the brain and heart. In the case presented, electrophysiological studies revealed a prominent reduction in the current amplitude without changes in the gating behavior of the Cav1.2 channel, most likely due to a trafficking defect. Due to the demonstrated loss of function, the p.Lys800Thr variant was finally classified as pathogenic (ACMG class 4 variant) and is likely to cause a newly described Cav1.2 channelopathy.


Asunto(s)
Arritmias Cardíacas , Trastorno Autístico , Canales de Calcio Tipo L , Canalopatías , Esmalte Dental , Mutación con Pérdida de Función , Trastornos del Humor , Adulto , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patología , Trastorno Autístico/genética , Trastorno Autístico/metabolismo , Trastorno Autístico/patología , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Canalopatías/genética , Canalopatías/metabolismo , Canalopatías/patología , Esmalte Dental/anomalías , Esmalte Dental/metabolismo , Esmalte Dental/patología , Humanos , Masculino , Trastornos del Humor/genética , Trastornos del Humor/metabolismo , Trastornos del Humor/patología
2.
J Biol Chem ; 293(18): 6647-6658, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29576549

RESUMEN

The epithelial sodium channel (ENaC) is a critical regulator of vertebrate electrolyte homeostasis. ENaC is the only constitutively open ion channel in the degenerin/ENaC protein family, and its expression, membrane abundance, and open probability therefore are tightly controlled. The canonical ENaC is composed of three subunits (α, ß, and γ), but a fourth δ-subunit may replace α and form atypical δßγ-ENaCs. Using Xenopus laevis as a model, here we found that mRNAs of the α- and δ-subunits are differentially expressed in different tissues and that δ-ENaC predominantly is present in the urogenital tract. Using whole-cell and single-channel electrophysiology of oocytes expressing Xenopus αßγ- or δßγ-ENaC, we demonstrate that the presence of the δ-subunit enhances the amount of current generated by ENaC due to an increased open probability, but also changes current into a transient form. Activity of canonical ENaCs is critically dependent on proteolytic processing of the α- and γ-subunits, and immunoblotting with epitope-tagged ENaC subunits indicated that, unlike α-ENaC, the δ-subunit does not undergo proteolytic maturation by the endogenous protease furin. Furthermore, currents generated by δßγ-ENaC were insensitive to activation by extracellular chymotrypsin, and presence of the δ-subunit prevented cleavage of γ-ENaC at the cell surface. Our findings suggest that subunit composition constitutes an additional level of ENaC regulation, and we propose that the Xenopus δ-ENaC subunit represents a functional example that demonstrates the importance of proteolytic maturation during ENaC evolution.


Asunto(s)
Canales Epiteliales de Sodio/metabolismo , Péptido Hidrolasas/metabolismo , Animales , Membrana Celular/metabolismo , Quimotripsina/metabolismo , Canales Epiteliales de Sodio/química , Canales Epiteliales de Sodio/genética , Furina/metabolismo , Oocitos/metabolismo , Oocitos/fisiología , Técnicas de Placa-Clamp , Proteolisis , ARN Mensajero/genética , Transducción de Señal , Sistema Urogenital/metabolismo , Xenopus laevis
3.
FASEB J ; 32(11): 6159-6173, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29879376

RESUMEN

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels encode neuronal and cardiac pacemaker currents. The composition of pacemaker channel complexes in different tissues is poorly understood, and the presence of additional HCN modulating subunits was speculated. Here we show that vesicle-associated membrane protein-associated protein B (VAPB), previously associated with a familial form of amyotrophic lateral sclerosis 8, is an essential HCN1 and HCN2 modulator. VAPB significantly increases HCN2 currents and surface expression and has a major influence on the dendritic neuronal distribution of HCN2. Severe cardiac bradycardias in VAPB-deficient zebrafish and VAPB-/- mice highlight that VAPB physiologically serves to increase cardiac pacemaker currents. An altered T-wave morphology observed in the ECGs of VAPB-/- mice supports the recently proposed role of HCN channels for ventricular repolarization. The critical function of VAPB in native pacemaker channel complexes will be relevant for our understanding of cardiac arrhythmias and epilepsies, and provides an unexpected link between these diseases and amyotrophic lateral sclerosis.-Silbernagel, N., Walecki, M., Schäfer, M.-K. H., Kessler, M., Zobeiri, M., Rinné, S., Kiper, A. K., Komadowski, M. A., Vowinkel, K. S., Wemhöner, K., Fortmüller, L., Schewe, M., Dolga, A. M., Scekic-Zahirovic, J., Matschke, L. A., Culmsee, C., Baukrowitz, T., Monassier, L., Ullrich, N. D., Dupuis, L., Just, S., Budde, T., Fabritz, L., Decher, N. The VAMP-associated protein VAPB is required for cardiac and neuronal pacemaker channel function.


Asunto(s)
Corazón/fisiología , Activación del Canal Iónico , Proteínas de la Membrana/fisiología , Neuronas/fisiología , Marcapaso Artificial , Animales , Proteínas Portadoras/fisiología , Embrión no Mamífero/citología , Embrión no Mamífero/fisiología , Femenino , Células HeLa , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Ratones , Ratones Noqueados , Neuronas/citología , Ratas , Ratas Sprague-Dawley , Proteínas de Transporte Vesicular , Xenopus laevis , Pez Cebra
4.
Circ Res ; 120(10): e33-e44, 2017 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-28219978

RESUMEN

RATIONALE: Familial sinus node and atrioventricular conduction dysfunction is a rare disorder that leads to paroxysmal dizziness, fatigue, and syncope because of a temporarily or permanently reduced heart rate. To date, only a few genes for familial sinus and atrioventricular conduction dysfunction are known, and the majority of cases remain pathogenically unresolved. OBJECTIVE: We aim to identify the disease gene in a large 3-generation family (n=25) with autosomal dominant sinus node dysfunction (SND) and atrioventricular block (AVB) and to characterize the mutation-related pathomechanisms in familial SND+AVB. METHODS AND RESULTS: Genome-wide linkage analysis mapped the SND+AVB disease locus to chromosome 7q21.1-q31.1 (2-point logarithm of the odds score: 4.64; θ=0); in this region, targeted exome sequencing identified a novel heterozygous mutation (p.Arg52Leu) in the GNB2 gene that strictly cosegregated with the SND+AVB phenotype. GNB2 encodes the ß2 subunit (Gß2) of the heterotrimeric G-protein complex that is being released from G-protein-coupled receptors on vagal stimulation. In 2 heterologous expression systems (HEK-293T cells and Xenopus laevis oocytes), an enhanced activation of the G-protein-activated K+ channel (GIRK; Kir3.1/Kir3.4) was shown when mutant Gß2 was coexpressed with Gγ2; this was in contrast to coexpression of mutant Gß2-Gγ2 with other cardiac ion channels (HCN4, HCN2, and Cav1.2). Molecular dynamics simulations suggested a reduced binding property of mutant Gß2 to cardiac GIRK channels when compared with native Gß2. CONCLUSIONS: A GNB2 gene mutation is associated with familial SND+AVB and leads to a sustained activation of cardiac GIRK channels, which is likely to hyperpolarize the myocellular membrane potential and thus reduces their spontaneous activity. Our findings describe for the first time a role of a mutant G-protein in the nonsyndromic pacemaker disease because of GIRK channel activation.


Asunto(s)
Bloqueo Atrioventricular/genética , Bloqueo Atrioventricular/fisiopatología , Proteínas de Unión al GTP/genética , Mutación/genética , Síndrome del Seno Enfermo/genética , Síndrome del Seno Enfermo/fisiopatología , Adulto , Secuencia de Aminoácidos , Bloqueo Atrioventricular/diagnóstico , Femenino , Perfilación de la Expresión Génica/métodos , Estudio de Asociación del Genoma Completo/métodos , Células HEK293 , Sistema de Conducción Cardíaco/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Síndrome del Seno Enfermo/diagnóstico , Nodo Sinoatrial/fisiología , Adulto Joven
5.
Biomed Pharmacother ; 171: 116163, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38242037

RESUMEN

Small conductance calcium-activated potassium (SK) channel activity has been proposed to play a role in the pathology of several neurological diseases. Besides regulating plasma membrane excitability, SK channel activation provides neuroprotection against ferroptotic cell death by reducing mitochondrial Ca2+ uptake and reactive oxygen species (ROS). In this study, we employed a multifaceted approach, integrating structure-based and computational techniques, to strategically design and synthesize an innovative class of potent small-molecule SK2 channel modifiers through highly efficient multicomponent reactions (MCRs). The compounds' neuroprotective activity was compared with the well-studied SK positive modulator, CyPPA. Pharmacological SK channel activation by selected compounds confers neuroprotection against ferroptosis at low nanomolar ranges compared to CyPPA, that mediates protection at micromolar concentrations, as shown by an MTT assay, real-time cell impedance measurements and propidium iodide staining (PI). These novel compounds suppress increased mitochondrial ROS and Ca2+ level induced by ferroptosis inducer RSL3. Moreover, axonal degeneration was rescued by these novel SK channel activators in primary mouse neurons and they attenuated glutamate-induced neuronal excitability, as shown via microelectrode array. Meanwhile, functional afterhyperpolarization of the novel SK2 channel modulators was validated by electrophysiological measurements showing more current change induced by the novel modulators than the reference compound, CyPPA. These data support the notion that SK2 channel activation can represent a therapeutic target for brain diseases in which ferroptosis and excitotoxicity contribute to the pathology.


Asunto(s)
Ferroptosis , Canales de Potasio de Pequeña Conductancia Activados por el Calcio , Ratones , Animales , Especies Reactivas de Oxígeno/metabolismo , Neuronas/metabolismo , Mitocondrias/metabolismo
6.
Elife ; 82019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30803485

RESUMEN

Two-pore-domain potassium (K2P) channels are key regulators of many physiological and pathophysiological processes and thus emerged as promising drug targets. As for other potassium channels, there is a lack of selective blockers, since drugs preferentially bind to a conserved binding site located in the central cavity. Thus, there is a high medical need to identify novel drug-binding sites outside the conserved lipophilic central cavity and to identify new allosteric mechanisms of channel inhibition. Here, we identified a novel binding site and allosteric inhibition mechanism, disrupting the recently proposed K+-flux gating mechanism of K2P channels, which results in an unusual voltage-dependent block of leak channels belonging to the TASK subfamily. The new binding site and allosteric mechanism of inhibition provide structural and mechanistic insights into the gating of TASK channels and the basis for the drug design of a new class of potent blockers targeting specific types of K2P channels.


Asunto(s)
Inhibidores Enzimáticos/metabolismo , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores , Regulación Alostérica , Animales , Sitios de Unión , Células Cultivadas , Humanos , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Oocitos , Canales de Potasio de Dominio Poro en Tándem/química , Canales de Potasio de Dominio Poro en Tándem/genética , Xenopus laevis
7.
Science ; 363(6429): 875-880, 2019 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-30792303

RESUMEN

Potassium (K+) channels have been evolutionarily tuned for activation by diverse biological stimuli, and pharmacological activation is thought to target these specific gating mechanisms. Here we report a class of negatively charged activators (NCAs) that bypass the specific mechanisms but act as master keys to open K+ channels gated at their selectivity filter (SF), including many two-pore domain K+ (K2P) channels, voltage-gated hERG (human ether-à-go-go-related gene) channels and calcium (Ca2+)-activated big-conductance potassium (BK)-type channels. Functional analysis, x-ray crystallography, and molecular dynamics simulations revealed that the NCAs bind to similar sites below the SF, increase pore and SF K+ occupancy, and open the filter gate. These results uncover an unrecognized polypharmacology among K+ channel activators and highlight a filter gating machinery that is conserved across different families of K+ channels with implications for rational drug design.


Asunto(s)
Clorobencenos/farmacología , Canal de Potasio ERG1/agonistas , Canal de Potasio ERG1/química , Activación del Canal Iónico/efectos de los fármacos , Canales de Potasio de Gran Conductancia Activados por el Calcio/agonistas , Canales de Potasio de Gran Conductancia Activados por el Calcio/química , Tetrahidronaftalenos/farmacología , Tetrazoles/farmacología , Tiourea/análogos & derivados , ortoaminobenzoatos/farmacología , Animales , Células CHO , Clorobencenos/química , Cricetulus , Cristalografía por Rayos X , Diseño de Fármacos , Células HEK293 , Humanos , Simulación de Dinámica Molecular , Dominios Proteicos , Tetrahidronaftalenos/química , Tetrazoles/química , Tiourea/química , Tiourea/farmacología , Xenopus , ortoaminobenzoatos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA