Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Phys Chem A ; 124(37): 7598-7607, 2020 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-32816477

RESUMEN

We present an approach combining a representation of a multivariate function using subdimensional functions with machine learning based representation of component functions: Random sampling high dimensional model representation Gaussian process regression (RS-HDMR-GPR). The use of Gaussian process regressions to represent component functions allows nonparametric (unbiased) representation and the possibility to work only with functions of desired dimensionality, obviating the need to build an expansion over orders of coupling. All component functions are determined from a single set of samples. The method is tested by fitting six- and 15-dimensional potential energy surfaces (PES) of polyatomic molecules as well as by computing vibrational spectra for a four-atomic molecule.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA