Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Br J Haematol ; 204(4): 1439-1449, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37807708

RESUMEN

Induction therapy followed by CD34+ cell mobilisation and autologous transplantation represents standard of care for multiple myeloma (MM). However, the anti-CD38 monoclonal antibodies daratumumab and isatuximab have been associated with mobilisation impairment, yet the mechanism remains unclear. In this study, we investigated the effect of three different regimens (dara-VCd, isa-KRd and VTd) on CD34+ cells using flow cytometry and transcriptomics. Decreased CD34+ cell peak concentration and yields, longer collection and delayed engraftment were reproduced after dara-VCd/isa-KRd versus VTd induction in 34 patients in total. Using flow cytometry, we detected major changes in the proportion of apheresis product and bone marrow CD34+ subsets in patients treated with regimens containing anti-CD38 therapy; however, without any decrease in CD38high B-lymphoid progenitors in both materials. RNA-seq of mobilised CD34+ cells from 21 patients showed that adhesion genes are overexpressed in CD34+ cells after dara-VCd/isa-KRd and JCAD, NRP2, MDK, ITGA3 and CLEC3B were identified as potential target genes. Finally, direct in vitro effect of isatuximab in upregulating JCAD and CLEC3B was confirmed by quantitative PCR. These findings suggest that upregulated adhesion-related interactions, rather than killing of CD34+ cells by effector mechanisms, could be leading causes of decreased mobilisation efficacy in MM patients treated with anti-CD38 therapy.


Asunto(s)
Mieloma Múltiple , Humanos , Mieloma Múltiple/terapia , Antígenos CD34/análisis , Médula Ósea/química , Citometría de Flujo , Movilización de Célula Madre Hematopoyética , ADP-Ribosil Ciclasa 1
2.
Plant Cell ; 33(9): 3104-3119, 2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34240187

RESUMEN

Structural maintenance of chromosome 5/6 (SMC5/6) complex is a crucial factor for preserving genome stability. Here, we show that mutants for several Arabidopsis (Arabidopsis thaliana) SMC5/6 complex subunits produce triploid offspring. This phenotype is caused by a meiotic defect leading to the production of unreduced male gametes. The SMC5/6 complex mutants show an absence of chromosome segregation during the first and/or the second meiotic division, as well as a partially disorganized microtubule network. Importantly, although the SMC5/6 complex is partly required for the repair of SPO11-induced DNA double-strand breaks, the nonreduction described here is SPO11-independent. The measured high rate of ovule abortion suggests that, if produced, such defects are maternally lethal. Upon fertilization with an unreduced pollen, the unbalanced maternal and paternal genome dosage in the endosperm most likely causes seed abortion observed in several SMC5/6 complex mutants. In conclusion, we describe the function of the SMC5/6 complex in the maintenance of gametophytic ploidy in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Segregación Cromosómica , Polen/crecimiento & desarrollo , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Roturas del ADN de Doble Cadena , Meiosis , Polen/genética
3.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34088847

RESUMEN

B chromosomes are enigmatic elements in thousands of plant and animal genomes that persist in populations despite being nonessential. They circumvent the laws of Mendelian inheritance but the molecular mechanisms underlying this behavior remain unknown. Here we present the sequence, annotation, and analysis of the maize B chromosome providing insight into its drive mechanism. The sequence assembly reveals detailed locations of the elements involved with the cis and trans functions of its drive mechanism, consisting of nondisjunction at the second pollen mitosis and preferential fertilization of the egg by the B-containing sperm. We identified 758 protein-coding genes in 125.9 Mb of B chromosome sequence, of which at least 88 are expressed. Our results demonstrate that transposable elements in the B chromosome are shared with the standard A chromosome set but multiple lines of evidence fail to detect a syntenic genic region in the A chromosomes, suggesting a distant origin. The current gene content is a result of continuous transfer from the A chromosomal complement over an extended evolutionary time with subsequent degradation but with selection for maintenance of this nonvital chromosome.


Asunto(s)
Cromosomas de las Plantas/genética , Evolución Molecular , Polen/genética , Proteínas Gestacionales/genética , Zea mays/genética , Meiosis/genética , Mitosis/genética
4.
Chemistry ; 29(26): e202203769, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-36807421

RESUMEN

Gold(I) centers can form moderately strong (Au⋅⋅⋅H) hydrogen bonds with tertiary ammonium groups, as has been demonstrated in the 3AuCl+ (3+ =1-(tert-butyl)-3-phenyl-4-(2-((dimethylammonio)methyl)phenyl)-1,2,4-triazol-5-ylidene) complex. However, similar hydrogen bonding interactions with isoelectronic silver(I) or copper(I) centers are unknown. Herein, we first explored whether the Au⋅⋅⋅H bond originally observed in 3AuCl+ can be strengthened by replacing Cl with Br or I. Experimental gas-phase IR spectra in the ∼3000 cm-1 region showed only a small effect of the halogen on the Au⋅⋅⋅H bond. Next, we measured the spectra of 3AgCl+ , which exhibited significant differences compared to its 3AuX+ counterparts. The difference has been explained by DFT calculations which indicated that the Ag⋅⋅⋅H interaction is only marginal in this complex, and a Cl⋅⋅⋅H hydrogen bond is formed instead. Calculations predicted the same for the 3CuCl+ complex. However, we noticed that for Ag and Cu complexes with less flexible ligands, such as dimethyl(2-(dimethylammonio)phenyl)phosphine (L7 H+ ), the computations predict the presence of the respective Ag⋅⋅⋅H and Cu⋅⋅⋅H hydrogen bonds, with a strength similar to the Au⋅⋅⋅H bond in 3AuCl+ . We, therefore, propose possible complexes where the presence of (Ag/Cu)⋅⋅⋅H bonds could be experimentally verified to broaden our understanding of these unusual interactions.

5.
Nature ; 544(7651): 427-433, 2017 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-28447635

RESUMEN

Cereal grasses of the Triticeae tribe have been the major food source in temperate regions since the dawn of agriculture. Their large genomes are characterized by a high content of repetitive elements and large pericentromeric regions that are virtually devoid of meiotic recombination. Here we present a high-quality reference genome assembly for barley (Hordeum vulgare L.). We use chromosome conformation capture mapping to derive the linear order of sequences across the pericentromeric space and to investigate the spatial organization of chromatin in the nucleus at megabase resolution. The composition of genes and repetitive elements differs between distal and proximal regions. Gene family analyses reveal lineage-specific duplications of genes involved in the transport of nutrients to developing seeds and the mobilization of carbohydrates in grains. We demonstrate the importance of the barley reference sequence for breeding by inspecting the genomic partitioning of sequence variation in modern elite germplasm, highlighting regions vulnerable to genetic erosion.


Asunto(s)
Cromosomas de las Plantas/genética , Genoma de Planta/genética , Hordeum/genética , Núcleo Celular/genética , Centrómero/genética , Cromatina/genética , Cromatina/metabolismo , Mapeo Cromosómico , Cromosomas Artificiales Bacterianos/genética , Variación Genética , Genómica , Haplotipos/genética , Meiosis/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Semillas/genética
6.
Molecules ; 28(8)2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37110879

RESUMEN

Modern computational protocols based on the density functional theory (DFT) infer that polyhedral closo ten-vertex carboranes are key starting stationary states in obtaining ten-vertex cationic carboranes. The rearrangement of the bicapped square polyhedra into decaborane-like shapes with open hexagons in boat conformations is caused by attacks of N-heterocyclic carbenes (NHCs) on the closo motifs. Single-point computations on the stationary points found during computational examinations of the reaction pathways have clearly shown that taking the "experimental" NHCs into account requires the use of dispersion correction. Further examination has revealed that for the purposes of the description of reaction pathways in their entirety, i.e., together with all transition states and intermediates, a simplified model of NHCs is sufficient. Many of such transition states resemble in their shapes those that dictate Z-rearrangement among various isomers of closo ten-vertex carboranes. Computational results are in very good agreement with the experimental findings obtained earlier.

7.
Int J Mol Sci ; 23(6)2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35328613

RESUMEN

Crested wheatgrass (Agropyron cristatum), a wild relative of wheat, is an attractive source of genes and alleles for their improvement. Its wider use is hampered by limited knowledge of its complex genome. In this work, individual chromosomes were purified by flow sorting, and DNA shotgun sequencing was performed. The annotation of chromosome-specific sequences characterized the DNA-repeat content and led to the identification of genic sequences. Among them, genic sequences homologous to genes conferring plant disease resistance and involved in plant tolerance to biotic and abiotic stress were identified. Genes belonging to the important groups for breeders involved in different functional categories were found. The analysis of the DNA-repeat content identified a new LTR element, Agrocen, which is enriched in centromeric regions. The colocalization of the element with the centromeric histone H3 variant CENH3 suggested its functional role in the grass centromere. Finally, 159 polymorphic simple-sequence-repeat (SSR) markers were identified, with 72 of them being chromosome- or chromosome-arm-specific, 16 mapping to more than one chromosome, and 71 mapping to all the Agropyron chromosomes. The markers were used to characterize orthologous relationships between A. cristatum and common wheat that will facilitate the introgression breeding of wheat using A. cristatum.


Asunto(s)
Agropyron , Agropyron/genética , Cromosomas de las Plantas/genética , Resistencia a la Enfermedad/genética , Fitomejoramiento , Triticum/genética
8.
Plant Biotechnol J ; 19(8): 1567-1578, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33606347

RESUMEN

Genomics studies in wild species of wheat have been limited due to the lack of references; however, new technologies and bioinformatics tools have much potential to promote genomic research. The wheat-Haynaldia villosa translocation line T6VS·6AL has been widely used as a backbone parent of wheat breeding in China. Therefore, revealing the genome structure of translocation chromosome 6VS·6AL will clarify how this chromosome formed and will help to determine how it affects agronomic traits. In this study, chromosome flow sorting, NGS sequencing and Chicago long-range linkage assembly were innovatively used to produce the assembled sequences of 6VS·6AL, and gene prediction and genome structure characterization at the molecular level were effectively performed. The analysis discovered that the short arm of 6VS·6AL was actually composed of a large distal segment of 6VS, a small proximal segment of 6AS and the centromere of 6A, while the collinear region in 6VS corresponding to 230-260 Mb of 6AS-Ta was deleted when the recombination between 6VS and 6AS occurred. In addition to the molecular mechanism of the increased grain weight and enhanced spike length produced by the translocation chromosome, it may be correlated with missing GW2-V and an evolved NRT-V cluster. Moreover, a fine physical bin map of 6VS was constructed by the high-throughput developed 6VS-specific InDel markers and a series of newly identified small fragment translocation lines involving 6VS. This study will provide essential information for mining of new alien genes carried by the 6VS·6AL translocation chromosome.


Asunto(s)
Fitomejoramiento , Triticum , Cromosomas de las Plantas/genética , Poaceae/genética , Translocación Genética , Triticum/genética
9.
J Exp Bot ; 72(2): 268-282, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33005935

RESUMEN

Seeds are complex biological systems comprising three genetically distinct tissues: embryo, endosperm, and maternal tissues (including seed coats and pericarp) nested inside one another. Cereal grains represent a special type of seeds, with the largest part formed by the endosperm, a specialized triploid tissue ensuring embryo protection and nourishment. We investigated dynamic changes in DNA content in three of the major seed tissues from the time of pollination up to the dry seed. We show that the cell cycle is under strict developmental control in different seed compartments. After an initial wave of active cell division, cells switch to endocycle and most endoreduplication events are observed in the endosperm and seed maternal tissues. Using different barley cultivars, we show that there is natural variation in the kinetics of this process. During the terminal stages of seed development, specific and selective loss of endoreduplicated nuclei occurs in the endosperm. This is accompanied by reduced stability of the nuclear genome, progressive loss of cell viability, and finally programmed cell death. In summary, our study shows that endopolyploidization and cell death are linked phenomena that frame barley grain development.


Asunto(s)
Hordeum , Ciclo Celular , Endorreduplicación , Endospermo/genética , Hordeum/genética , Semillas/genética
10.
Ann Bot ; 127(1): 33-47, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32902599

RESUMEN

BACKGROUND AND AIMS: Dioecious species with well-established sex chromosomes are rare in the plant kingdom. Most sex chromosomes increase in size but no comprehensive analysis of the kind of sequences that drive this expansion has been presented. Here we analyse sex chromosome structure in common sorrel (Rumex acetosa), a dioecious plant with XY1Y2 sex determination, and we provide the first chromosome-specific repeatome analysis for a plant species possessing sex chromosomes. METHODS: We flow-sorted and separately sequenced sex chromosomes and autosomes in R. acetosa using the two-dimensional fluorescence in situ hybridization in suspension (FISHIS) method and Illumina sequencing. We identified and quantified individual repeats using RepeatExplorer, Tandem Repeat Finder and the Tandem Repeats Analysis Program. We employed fluorescence in situ hybridization (FISH) to analyse the chromosomal localization of satellites and transposons. KEY RESULTS: We identified a number of novel satellites, which have, in a fashion similar to previously known satellites, significantly expanded on the Y chromosome but not as much on the X or on autosomes. Additionally, the size increase of Y chromosomes is caused by non-long terminal repeat (LTR) and LTR retrotransposons, while only the latter contribute to the enlargement of the X chromosome. However, the X chromosome is populated by different LTR retrotransposon lineages than those on Y chromosomes. CONCLUSIONS: The X and Y chromosomes have significantly diverged in terms of repeat composition. The lack of recombination probably contributed to the expansion of diverse satellites and microsatellites and faster fixation of newly inserted transposable elements (TEs) on the Y chromosomes. In addition, the X and Y chromosomes, despite similar total counts of TEs, differ significantly in the representation of individual TE lineages, which indicates that transposons proliferate preferentially in either the paternal or the maternal lineage.


Asunto(s)
Rumex , Cromosomas de las Plantas , Evolución Molecular , Hibridación Fluorescente in Situ , Retroelementos , Rumex/genética , Cromosomas Sexuales
11.
Inorg Chem ; 60(12): 8428-8431, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34101456

RESUMEN

The electrophilic substitution of icosahedral closo-1-SB11H11 with methyl iodide has resulted in two B-functionalized thiaboranes, 7,12-I2-2,3,4,5,6,8,9,10,11-(CH3)9-1-closo-SB11 and 7,8,12-I3-2,3,4,5,6,9,10,11-(CH3)8-closo-1-SB11, with the former being significantly predominant. These two icosahedral thiaboranes are the first cases of polysubstituted polyhedral boron clusters with another vertex that differs from B and C. Such polyfunctionalizations have increased the earlier observed thiaborane icosahedral barrier, not exhibiting any reactivity toward bases, unlike the parent thiaborane. The search for methylation pathways has revealed that the complete B11-methylation is impossible, like in the case of decaborane(14), where this seems to be a result of the positively charged upper parts of these two molecules.

12.
Int J Mol Sci ; 22(22)2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34830250

RESUMEN

The plant nucleus plays an irreplaceable role in cellular control and regulation by auxin (indole-3-acetic acid, IAA) mainly because canonical auxin signaling takes place here. Auxin can enter the nucleus from either the endoplasmic reticulum or cytosol. Therefore, new information about the auxin metabolome (auxinome) in the nucleus can illuminate our understanding of subcellular auxin homeostasis. Different methods of nuclear isolation from various plant tissues have been described previously, but information about auxin metabolite levels in nuclei is still fragmented and insufficient. Herein, we tested several published nucleus isolation protocols based on differential centrifugation or flow cytometry. The optimized sorting protocol leading to promising yield, intactness, and purity was then combined with an ultra-sensitive mass spectrometry analysis. Using this approach, we can present the first complex report on the auxinome of isolated nuclei from cell cultures of Arabidopsis and tobacco. Moreover, our results show dynamic changes in auxin homeostasis at the intranuclear level after treatment of protoplasts with free IAA, or indole as a precursor of auxin biosynthesis. Finally, we can conclude that the methodological procedure combining flow cytometry and mass spectrometry offers new horizons for the study of auxin homeostasis at the subcellular level.


Asunto(s)
Arabidopsis/metabolismo , Fraccionamiento Celular/métodos , Núcleo Celular/metabolismo , Ácidos Indolacéticos/metabolismo , Indoles/metabolismo , Nicotiana/metabolismo , Células Vegetales/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/ultraestructura , Técnicas de Cultivo de Célula , Fraccionamiento Celular/instrumentación , Núcleo Celular/efectos de los fármacos , Núcleo Celular/ultraestructura , Centrifugación/métodos , Citometría de Flujo , Homeostasis/fisiología , Indoles/farmacología , Espectrometría de Masas , Células Vegetales/efectos de los fármacos , Células Vegetales/ultraestructura , Reguladores del Crecimiento de las Plantas/metabolismo , Protoplastos/química , Nicotiana/efectos de los fármacos , Nicotiana/ultraestructura
13.
Plant J ; 98(5): 767-782, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31017340

RESUMEN

Cowpea (Vigna unguiculata [L.] Walp.) is a major crop for worldwide food and nutritional security, especially in sub-Saharan Africa, that is resilient to hot and drought-prone environments. An assembly of the single-haplotype inbred genome of cowpea IT97K-499-35 was developed by exploiting the synergies between single-molecule real-time sequencing, optical and genetic mapping, and an assembly reconciliation algorithm. A total of 519 Mb is included in the assembled sequences. Nearly half of the assembled sequence is composed of repetitive elements, which are enriched within recombination-poor pericentromeric regions. A comparative analysis of these elements suggests that genome size differences between Vigna species are mainly attributable to changes in the amount of Gypsy retrotransposons. Conversely, genes are more abundant in more distal, high-recombination regions of the chromosomes; there appears to be more duplication of genes within the NBS-LRR and the SAUR-like auxin superfamilies compared with other warm-season legumes that have been sequenced. A surprising outcome is the identification of an inversion of 4.2 Mb among landraces and cultivars, which includes a gene that has been associated in other plants with interactions with the parasitic weed Striga gesnerioides. The genome sequence facilitated the identification of a putative syntelog for multiple organ gigantism in legumes. A revised numbering system has been adopted for cowpea chromosomes based on synteny with common bean (Phaseolus vulgaris). An estimate of nuclear genome size of 640.6 Mbp based on cytometry is presented.


Asunto(s)
Cromosomas de las Plantas/genética , Genes de Plantas/genética , Tamaño del Genoma/genética , Genoma de Planta/genética , Vigna/genética , Mapeo Cromosómico , ADN de Plantas/química , ADN de Plantas/genética , Phaseolus/genética , Retroelementos/genética , Análisis de Secuencia de ADN/métodos , Sintenía
14.
Ecol Lett ; 23(10): 1499-1510, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32808457

RESUMEN

In arthropod community ecology, species richness studies tend to be prioritised over those investigating patterns of abundance. Consequently, the biotic and abiotic drivers of arboreal arthropod abundance are still relatively poorly known. In this cross-continental study, we employ a theoretical framework in order to examine patterns of covariance among herbivorous and predatory arthropod guilds. Leaf-chewing and leaf-mining herbivores, and predatory ants and spiders, were censused on > 1000 trees in nine 0.1 ha forest plots. After controlling for tree size and season, we found no negative pairwise correlations between guild abundances per plot, suggestive of weak signals of both inter-guild competition and top-down regulation of herbivores by predators. Inter-guild interaction strengths did not vary with mean annual temperature, thus opposing the hypothesis that biotic interactions intensify towards the equator. We find evidence for the bottom-up limitation of arthropod abundances via resources and abiotic factors, rather than for competition and predation.


Asunto(s)
Artrópodos , Arañas , Animales , Herbivoria , Conducta Predatoria , Árboles
15.
J Exp Bot ; 71(20): 6262-6272, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-32805034

RESUMEN

Despite much recent progress, our understanding of the principles of plant genome organization and its dynamics in three-dimensional space of interphase nuclei remains surprisingly limited. Notably, it is not clear how these processes could be affected by the size of a plant's nuclear genome. In this study, DNA replication timing and interphase chromosome positioning were analyzed in seven Poaceae species that differ in their genome size. To provide a comprehensive picture, a suite of advanced, complementary methods was used: labeling of newly replicated DNA by ethynyl-2'-deoxyuridine, isolation of nuclei at particular cell cycle phases by flow cytometric sorting, three-dimensional immunofluorescence in situ hybridization, and confocal microscopy. Our results revealed conserved dynamics of DNA replication in all species, and a similar replication timing order for telomeres and centromeres, as well as for euchromatin and heterochromatin regions, irrespective of genome size. Moreover, stable chromosome positioning was observed while transitioning through different stages of interphase. These findings expand upon earlier studies in suggesting that a more complex interplay exists between genome size, organization of repetitive DNA sequences along chromosomes, and higher order chromatin structure and its maintenance in interphase, albeit controlled by currently unknown factors.


Asunto(s)
Núcleo Celular , Posicionamiento de Cromosoma , Núcleo Celular/genética , Centrómero/genética , Replicación del ADN , Genoma de Planta , Interfase
16.
Theor Appl Genet ; 133(3): 903-915, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31894365

RESUMEN

KEY MESSAGE: Lr76 and Yr70 have been fine mapped using the sequence of flow-sorted recombinant 5D chromosome from wheat-Ae. umbellulata introgression line. The alien introgression has been delineated to 9.47-Mb region on short arm of wheat chromosome 5D. Leaf rust and stripe rust are among the most damaging diseases of wheat worldwide. Wheat cultivation based on limited number of rust resistance genes deployed over vast areas expedites the emergence of new pathotypes warranting a continuous deployment of new resistance genes. In this paper, fine mapping of Aegilops umbellulata-derived leaf rust and stripe rust resistance genes Lr76 and Yr70 is being reported. We flow sorted and paired-end sequenced 5U chromosome of Ae. umbellulata, recombinant chromosome 5D (5DIL) from wheat-Ae. umbellulata introgression line pau16057 and 5DRP of recurrent parent WL711. Chromosome 5U reads were mapped against the reference Chinese Spring chromosome 5D sequence, and alien-specific SNPs were identified. Chromosome 5DIL and 5DRP sequences were de novo assembled, and alien introgression-specific markers were designed by selecting 5U- and 5D-specific SNPs. Overall, 27 KASP markers were mapped in high-resolution population consisting of 1404 F5 RILs. The mapping population segregated for single gene each for leaf rust and stripe rust resistance. The physical order of the SNPs in pau16057 was defined by projecting the 27 SNPs against the IWGSC RefSeq v1.0 sequence. Based on this physical map, the size of Ae. umbellulata introgression was determined to be 9.47 Mb on the distal most end of the short arm of chromosome 5D. This non-recombining alien segment carries six NB-LRR encoding genes based on NLR annotation of assembled chromosome 5DIL sequence and IWGSC RefSeq v1.1 gene models. The presence of SNPs and other sequence variations in these genes between pau16057 and WL711 suggested that they are candidates for Lr76 and Yr70.


Asunto(s)
Aegilops/genética , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Telómero/genética , Triticum/genética , Basidiomycota/crecimiento & desarrollo , Basidiomycota/patogenicidad , Mapeo Cromosómico , Cromosomas de las Plantas , Genes de Plantas , Introgresión Genética , Marcadores Genéticos , Secuenciación de Nucleótidos de Alto Rendimiento , Fenotipo , Fitomejoramiento , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Hojas de la Planta/microbiología , Polimorfismo de Nucleótido Simple , Recombinación Genética , Triticum/microbiología
17.
Mol Biol Rep ; 47(3): 1991-2003, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32034627

RESUMEN

Diploid A genome wheat species harbor immense genetic variability which has been targeted and proven useful in wheat improvement. Development and deployment of sequence-based markers has opened avenues for comparative analysis, gene transfer and marker assisted selection (MAS) using high throughput cost effective genotyping techniques. Chromosome 2A of wheat is known to harbor several economically important genes. The present study aimed at identification of genic sequences corresponding to full length cDNAs and mining of SSRs and ISBPs from 2A draft sequence assembly of hexaploid wheat cv. Chinese Spring for marker development. In total, 1029 primer pairs including 478 gene derived, 501 SSRs and 50 ISBPs were amplified in diploid A genome species Triticum monococcum and T. boeoticum identifying 221 polymorphic loci. Out of these, 119 markers were mapped onto a pre-existing chromosome 2A genetic map consisting of 42 mapped markers. The enriched genetic map constituted 161 mapped markers with final map length of 549.6 cM. Further, 2A genetic map of T. monococcum was anchored to the physical map of 2A of cv. Chinese Spring which revealed several rearrangements between the two species. The present study generated a highly saturated genetic map of 2A and physical anchoring of genetically mapped markers revealed a complex genetic architecture of chromosome 2A that needs to be investigated further.


Asunto(s)
Mapeo Cromosómico/métodos , Cromosomas de las Plantas/genética , Sitios de Carácter Cuantitativo , Triticum/genética , Diploidia , Secuenciación de Nucleótidos de Alto Rendimiento , Repeticiones de Microsatélite , Polimorfismo de Nucleótido Simple , Poliploidía , Análisis de Secuencia de ADN
18.
Plant Physiol ; 177(1): 168-180, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29545269

RESUMEN

Semidwarfing genes have improved crop yield by reducing height, improving lodging resistance, and allowing plants to allocate more assimilates to grain growth. In wheat (Triticum aestivum), the Rht18 semidwarfing gene was identified and deployed in durum wheat before it was transferred into bread wheat, where it was shown to have agronomic potential. Rht18, a dominant and gibberellin (GA) responsive mutant, is genetically and functionally distinct from the widely used GA-insensitive semidwarfing genes Rht-B1b and Rht-D1b In this study, the Rht18 gene was identified by mutagenizing the semidwarf durum cultivar Icaro (Rht18) and generating mutants with a range of tall phenotypes. Isolating and sequencing chromosome 6A of these "overgrowth" mutants showed that they contained independent mutations in the coding region of GA2oxA9GA2oxA9 is predicted to encode a GA 2-oxidase that metabolizes GA biosynthetic intermediates into inactive products, effectively reducing the amount of bioactive GA (GA1). Functional analysis of the GA2oxA9 protein demonstrated that GA2oxA9 converts the intermediate GA12 to the inactive metabolite GA110 Furthermore, Rht18 showed higher expression of GA2oxA9 and lower GA content compared with its tall parent. These data indicate that the increased expression of GA2oxA9 in Rht18 results in a reduction of both bioactive GA content and plant height. This study describes a height-reducing mechanism that can generate new genetic diversity for semidwarfism in wheat by combining increased expression with mutations of specific amino acid residues in GA2oxA9.


Asunto(s)
Giberelinas/metabolismo , Proteínas de Plantas/genética , Triticum/crecimiento & desarrollo , Triticum/genética , Centrómero/genética , Mapeo Cromosómico , Cromosomas de las Plantas , Regulación de la Expresión Génica de las Plantas , Giberelinas/genética , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Mutagénesis , Proteínas de Plantas/metabolismo , Poliploidía , Regiones Promotoras Genéticas , Triticum/metabolismo
19.
Theor Appl Genet ; 132(10): 2881-2898, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31312850

RESUMEN

KEY MESSAGE: Using COS markers, the study reveals homeologous relationships between tetraploid Agropyron cristatum and bread wheat to support alien introgression breeding of wheat. Crested wheatgrass (Agropyron cristatum L. Gaertn.) is a wild relative of wheat that possesses many genes that are potentially useful in wheat improvement. The species comprises a complex of diploid, tetraploid and hexaploid forms. In this study, wheat-A. cristatum chromosome, telosome and translocation lines were used to characterize syntenic relationships between tetraploid A. cristatum and bread wheat. Prior to mapping COS markers, the cytogenetic stock lines were characterized for fertility and by FISH and GISH for karyotype stability. Out of 328 COS markers selected for the study, 279 consistently amplified products in tetraploid A. cristatum, and, out of these, 139 were polymorphic between tetraploid crested wheatgrass and wheat. Sixty-nine markers were found to be suitable for the detection of tetraploid A. cristatum chromosomes 1P-6P in wheat, ranging from 6 to 17 markers per chromosome. BLASTn of the source ESTs resulted in significant hits for 67 markers on the wheat pseudomolecules. Generally, COS markers of the same homeologous group were detected on similar arms in both Agropyron and wheat. However, some intragenomic duplications and chromosome rearrangements were detected in tetraploid A. cristatum. These results provide new insights into the structure and evolution of the tetraploid A. cristatum genome and will facilitate the exploitation of the wild species for introgression breeding of bread wheat.


Asunto(s)
Agropyron/genética , Pan/análisis , Marcadores Genéticos , Genoma de Planta/genética , Hibridación Genética , Tetraploidía , Triticum/genética , Agropyron/crecimiento & desarrollo , Mapeo Cromosómico , Cromosomas de las Plantas , Genotipo , Translocación Genética , Triticum/crecimiento & desarrollo
20.
Theor Appl Genet ; 132(4): 1061-1072, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30535646

RESUMEN

A segment of Triticum militinae chromosome 7G harbors a gene(s) conferring powdery mildew resistance which is effective at both the seedling and the adult plant stages when transferred into bread wheat (T. aestivum). The introgressed segment replaces a piece of wheat chromosome arm 4AL. An analysis of segregating materials generated to positionally clone the gene highlighted that in a plant heterozygous for the introgression segment, only limited recombination occurs between the introgressed region and bread wheat 4A. Nevertheless, 75 genetic markers were successfully placed within the region, thereby confining the gene to a 0.012 cM window along the 4AL arm. In a background lacking the Ph1 locus, the localized rate of recombination was raised 33-fold, enabling the reduction in the length of the region containing the resistance gene to a 480 kbp stretch harboring 12 predicted genes. The substituted segment in the reference sequence of bread wheat cv. Chinese Spring is longer (640 kbp) and harbors 16 genes. A comparison of the segments' sequences revealed a high degree of divergence with respect to both their gene content and nucleotide sequence. Of the 12 T. militinae genes, only four have a homolog in cv. Chinese Spring. Possible candidate genes for the resistance have been identified based on function predicted from their sequence.


Asunto(s)
Ascomicetos/fisiología , Resistencia a la Enfermedad/genética , Genes de Plantas , Sitios Genéticos , Variación Genética , Enfermedades de las Plantas/inmunología , Triticum/genética , Triticum/microbiología , Pan , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Clonación Molecular , Anotación de Secuencia Molecular , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Triticum/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA