Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Microsc Microanal ; : 1-13, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35229707

RESUMEN

Carbon xerogel nanocomposites with integrated Bi and Fe particles (C­Bi­Fe) represent an interesting model of carbon nanostructures decorated with multifunctional nanoparticles (NPs) with applicability for electrochemical sensors and catalysts. The present study addresses the fundamental aspects of the catalyzed growth of nano-graphites in C­Bi­Fe systems, relevant in charge transport and thermo-chemical processes. The thermal evolution of a C­Bi­Fe xerogel is investigated using different pyrolysis treatments. At lower temperatures (~750°C), hybrid bismuth iron oxide (BFO) NPs are frequently observed, while graphitization manifests under more specific conditions such as higher temperatures (~1,050°C) and reduction yields. An in situ heating TEM experiment reveals graphitization activity between 800 and 900°C. NP motion is directly correlated with textural changes of the carbon support due to the catalyzed growth of graphitic nanoshells and nanofibers as confirmed by HR-TEM and electron tomography (ET) for the graphitized sample. An exponential growth model for the catalyst dynamics enables the approximation of activation energies as 0.68 and 0.29­0.34 eV during reduction and graphitization stages. The results suggest some similarities with the tip growth mechanism, while oxygen interference and the limited catalyst­feed gas interactions are considered as the main constraints to enhanced growth.

2.
Mikrochim Acta ; 189(9): 337, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35978146

RESUMEN

An innovative research has been conducted focused on demonstrating the ability of novel dual-emissive glutathione-stabilized gold nanoclusters (GSH-AuNCs) to perform bright near-infrared (NIR)-emitting contrast agents inside tissue-mimicking agarose-phantoms via two complementary confocal fluorescence imaging techniques. First, using a new and fast microwave-assisted approach, we synthesized photostable dual-emitting GSH-AuNCs with an average size of 3.2 ± 0.4 nm and NIR emission quantum yield of 9.9%. Steady-state fluorescence measurements coupled with fluorescence lifetime imaging microscopy (FLIM) assays performed on lyophilized GSH-AuNCs revealed that the obtained GSH-AuNCs exhibit PL emissions at 610 nm (red PL) and, respectively, 800 nm (NIR PL) in both solution and powder solid-state. Time-resolved fluorescence measurements showed that the two PL components are characterized by average lifetimes of 407 ns (red PL) and 1821 ns (NIR PL), respectively. Additionally, due to a partial overlap between the red PL and the absorption of the NIR PL, an energy transfer between the two coexisting emissive centers was discovered and confirmed via steady-state and time-resolved fluorescence measurements. Furthermore, the FLIM analysis performed on powder GSH-AuNCs under 640 nm, an excitation more suitable for bioimaging applications, revealed a homogeneous and photostable NIR PL signal from GSH-AuNCs. Finally, the ability of GSH-AuNCs to operate as reliable NIR-emitting contrast agents inside tissue-mimicking agarose-phantoms was demonstrated here for the first time via complementary FLIM and re-scan confocal fluorescence imaging techniques. In consequence, GSH-AuNCs show great promise for future in vivo imaging applications via confocal fluorescence microscopy.


Asunto(s)
Oro , Nanopartículas del Metal , Medios de Contraste , Glutatión , Imagen Óptica , Polvos , Sefarosa
3.
Int J Mol Sci ; 23(19)2022 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-36233297

RESUMEN

Rapid, simple, and sensitive analysis of relevant proteins is crucial in many research areas, such as clinical diagnosis and biomarker detection. In particular, clinical data on cancer biomarkers show great promise in forming reliable predictions for early cancer diagnostics, although the current analytical systems are difficult to implement in regions of limited recourses. Paper-based biosensors, in particular, have recently received great interest because they meet the criteria for point-of-care (PoC) devices; the main drawbacks with these devices are the low sensitivity and efficiency in performing quantitative measurements. In this work, we design a low-cost paper-based nanosensor through plasmonic calligraphy by directly drawing individual plasmonic lines on filter paper using a ballpoint pen filled with gold nanorods (AuNR) as the colloidal ink. The plasmonic arrays were further successively coated with negatively and positively charged polyelectrolyte layers employed as dielectric spacers to promote the enhancement of the emission of carboxyl-functionalized quantum dots (QD)-previously conjugated with specific antibodies-for indirect detection of the carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5). The efficiency, sensitivity, as well as the specificity of our portable nanosensor were validated by recording the luminescence of the QD@Ab complex when different concentrations of CEACAM5 were added dropwise onto the calligraphed plasmonic arrays.


Asunto(s)
Técnicas Biosensibles , Nanotubos , Antígeno Carcinoembrionario , Oro , Polielectrolitos
4.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36430201

RESUMEN

Photothermal therapy (PTT) is gaining a lot of interest as a cancer treatment option with minimal side effects due to the efficient photothermal agents employed. They are based on nanomaterials that, upon laser irradiation, absorb photon energy and convert it into heat to induce hyperthermia, which destroys the cancer cells. Here, the unique light-to-heat conversion features of three different gold nanotriangular nanoparticles (AuNTs) are evaluated with respect to their absorption properties to select the most efficient nanoheater with the highest potential to operate as an efficient photothermal agent. AuNTs with LSPR response in- and out- of resonance with the 785 nm near-infrared (NIR) excitation wavelength are investigated. Upon 15 min laser exposure, the AuNTs that exhibit a plasmonic response in resonance with the 785 nm laser line show the highest photothermal conversion efficacy of 80%, which correlates with a temperature increase of 22 °C. These photothermal properties are well-preserved in agarose-based skin biological phantoms that mimic the melanoma tumoral tissue and surrounding healthy tissue. Finally, in vitro studies on B16.F10 melanoma cells prove by fluorescence staining and MTT assay that the highest phototoxic effect after NIR laser exposure is induced by AuNTs with LSPR response in resonance with the employed laser line, thus demonstrating their potential implementation as efficient photothermal agents in PTT.


Asunto(s)
Melanoma Experimental , Nanopartículas del Metal , Animales , Oro/farmacología , Fototerapia , Nanopartículas del Metal/uso terapéutico , Fármacos Fotosensibilizantes , Melanoma Experimental/terapia
5.
Part Fibre Toxicol ; 18(1): 9, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33602232

RESUMEN

BACKGROUND: In vitro models are widely used in nanotoxicology. In these assays, a careful documentation of the fraction of nanomaterials that reaches the cells, i.e. the in vitro delivered dose, is a critical element for the interpretation of the data. The in vitro delivered dose can be measured by quantifying the amount of material in contact with the cells, or can be estimated by applying particokinetic models. For carbon nanotubes (CNTs), the determination of the in vitro delivered dose is not evident because their quantification in biological matrices is difficult, and particokinetic models are not adapted to high aspect ratio materials. Here, we applied a rapid and direct approach, based on femtosecond pulsed laser microscopy (FPLM), to assess the in vitro delivered dose of multi-walled CNTs (MWCNTs). METHODS AND RESULTS: We incubated mouse lung fibroblasts (MLg) and differentiated human monocytic cells (THP-1) in 96-well plates for 24 h with a set of different MWCNTs. The cytotoxic response to the MWCNTs was evaluated using the WST-1 assay in both cell lines, and the pro-inflammatory response was determined by measuring the release of IL-1ß by THP-1 cells. Contrasting cell responses were observed across the MWCNTs. The sedimentation rate of the different MWCNTs was assessed by monitoring turbidity decay with time in cell culture medium. These turbidity measurements revealed some differences among the MWCNT samples which, however, did not parallel the contrasting cell responses. FPLM measurements in cell culture wells revealed that the in vitro delivered MWCNT dose did not parallel sedimentation data, and suggested that cultured cells contributed to set up the delivered dose. The FPLM data allowed, for each MWCNT sample, an adjustment of the measured cytotoxicity and IL-1ß responses to the delivered doses. This adjusted in vitro activity led to another toxicity ranking of the MWCNT samples as compared to the unadjusted activities. In macrophages, this adjusted ranking was consistent with existing knowledge on the impact of surface MWCNT functionalization on cytotoxicity, and might better reflect the intrinsic activity of the MWCNT samples. CONCLUSION: The present study further highlights the need to estimate the in vitro delivered dose in cell culture experiments with nanomaterials. The FPLM measurement of the in vitro delivered dose of MWCNTs can enrich experimental results, and may refine our understanding of their interactions with cells.


Asunto(s)
Nanotubos de Carbono , Técnicas de Cultivo de Célula , Macrófagos , Microscopía Confocal , Monocitos
6.
Anal Biochem ; 593: 113587, 2020 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-31978457

RESUMEN

This study explores the morpho-structure of gallstones (GSs) removed from 36 patients in NW Romania and correlate it with the laboratory results of the patients. GSs were analyzed by SEM-EDS, X-ray diffraction and IR, UV-Vis and X-ray photoelectron spectroscopy. The laboratory studies consisted in hematological, coagulation, biochemistry, immunological and tumor markers tests. The morphological and structural investigations allowed to classify the GS in five different types and to establish their mechanism of formation. Only macroscopic evaluation, SEM microscopy, FTIR and UV-Vis spectroscopy give different easily noticeable information for each GS type. EDS, XPS and XRD diffraction are recommended to distinguish pigment and carbonate stones from the other GS types and a carefully examination is needed to establish the differences between the pure cholesterol, the mixed cholesterol and the composite cholesterol stones, due to the high similarities. The variation of specific markers cannot differentiate the patients with pure cholesterol GS from those with mixed cholesterol and pigment GS and those with mixed cholesterol from those with composite cholesterol stones. Seven laboratory parameters (RDW-CV, MPV, PCT, GLUC-HK, WBC, PT, GPT) are the key indicators for the GS disease and trend to present generally higher values than normal.


Asunto(s)
Bilirrubina/análisis , Colesterol/análisis , Cálculos Biliares/química , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
7.
Part Fibre Toxicol ; 17(1): 60, 2020 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-33243293

RESUMEN

BACKGROUND: Inhalation of multi-walled carbon nanotubes (MWCNTs) poses a potential risk to human health. In order to safeguard workers and consumers, the toxic properties of MWCNTs need to be identified. Functionalization has been shown to either decrease or increase MWCNT-related pulmonary injury, depending on the type of modification. We, therefore, investigated both acute and chronic pulmonary toxicity of a library of MWCNTs derived from a common pristine parent compound (NC7000). METHODS: MWCNTs were thermally or chemically purified and subsequently surface functionalized by carboxylation or amination. To evaluate pulmonary toxicity, male C57BL6 mice were dosed via oropharyngeal aspiration with either 1.6 or 4 mg/kg of each MWCNT type. Mitsui-7 MWCNT was used as a positive control. Necropsy was performed at days 3 and 60 post-exposure to collect bronchoalveolar lavage fluid (BALF) and lungs. RESULTS: At day 3 all MWCNTs increased the number of neutrophils in BALF. Chemical purification had a greater effect on pro-inflammatory cytokines (IL-1ß, IL-6, CXCL1) in BALF, while thermal purification had a greater effect on pro-fibrotic cytokines (CCL2, OPN, TGF-ß1). At day 60, thermally purified, carboxylated MWCNTs had the strongest effect on lymphocyte numbers in BALF. Thermally purified MWCNTs caused the greatest increase in LDH and total protein in BALF. Furthermore, the thermally purified and carboxyl- or amine-functionalized MWCNTs caused the greatest number of granulomatous lesions in the lungs. The physicochemical characteristics mainly associated with increased toxicity of the thermally purified derivatives were decreased surface defects and decreased amorphous content as indicated by Raman spectroscopy. CONCLUSIONS: These data demonstrate that the purification method is an important determinant of lung toxicity induced by carboxyl- and amine-functionalized MWCNTs.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Pulmón/efectos de los fármacos , Nanotubos de Carbono/toxicidad , Administración por Inhalación , Animales , Líquido del Lavado Bronquioalveolar/química , Citocinas/metabolismo , Exposición por Inhalación , Lesión Pulmonar , Ratones , Ratones Endogámicos C57BL , Factor de Crecimiento Transformador beta1/metabolismo
8.
Molecules ; 26(1)2020 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-33383893

RESUMEN

Multifunctional Bi- and Fe-modified carbon xerogel composites (CXBiFe), with different Fe concentrations, were obtained by a resorcinol-formaldehyde sol-gel method, followed by drying in ambient conditions and pyrolysis treatment. The morphological and structural characterization performed by X-ray diffraction (XRD), Raman spectroscopy, N2 adsorption/desorption porosimetry, scanning electron microscopy (SEM) and scanning/transmission electron microscopy (STEM) analyses, indicates the formation of carbon-based nanocomposites with integrated Bi and Fe oxide nanoparticles. At higher Fe concentrations, Bi-Fe-O interactions lead to the formation of hybrid nanostructures and off-stoichiometric Bi2Fe4O9 mullite-like structures together with an excess of iron oxide nanoparticles. To examine the effect of the Fe content on the electrochemical performance of the CXBiFe composites, the obtained powders were initially dispersed in a chitosan solution and applied on the surface of glassy carbon electrodes. Then, the multifunctional character of the CXBiFe systems is assessed by involving the obtained modified electrodes for the detection of different analytes, such as biomarkers (hydrogen peroxide) and heavy metal ions (i.e., Pb2+). The achieved results indicate a drop in the detection limit for H2O2 as Fe content increases. Even though the current results suggest that the surface modifications of the Bi phase with Fe and O impurities lower Pb2+ detection efficiencies, Pb2+ sensing well below the admitted concentrations for drinkable water is also noticed.


Asunto(s)
Bismuto/química , Carbono/química , Peróxido de Hidrógeno/análisis , Hierro/química , Plomo/análisis , Nanoestructuras/química , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Electrodos , Diseño de Equipo , Geles/química , Metales Pesados/análisis
9.
Nanotechnology ; 30(31): 315701, 2019 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-30974419

RESUMEN

This paper presents the fabrication and characterization of new gold-silver core-shell nanoparticles labeled with para-mercaptobenzoic acid (4MBA) molecules and demonstrates their use as surface-enhanced Raman spectroscopy (SERS)-nanotags with ultra-bright traceability inside cells and ability to convey spectrally-coded information about the intracellular pH by means of SERS. Unlike previous reported studies, our fabrication procedure includes in the first step the synthesis of chitosan-coated gold nanoparticles as a seed material with subsequent growing of a silver shell. The bimetallic core-shell structure is revealed by transmission electron microscopy, high-angle annular dark field scanning transmission electron microscopy, energy-dispersive x-ray elemental mapping and the presence of two interacting localized surface plasmon resonance modes in UV-vis extinction spectrum. The high SERS activity and sensitivity of as fabricated 4MBA-chit-Au-AgNPs nano-constructs to different pH in solution is investigated under 532 and 633 nm laser lines excitation. Next, in view of future studies in cancer diagnosis, the in vitro antiproliferative effects of SERS-nanotags against human ovarian adenocarcinoma cells (NIH:OVCAR-3) are evaluated. The capacity to operate as bright SERS nanotags with precise localization at a single cell level as well as intracellular pH indicators is clearly demonstrated by performing cell imaging under scanning confocal Raman microscopy.


Asunto(s)
Oro/química , Nanopartículas del Metal/química , Neoplasias Ováricas/diagnóstico , Plata/química , Espectrometría Raman/métodos , Benzoatos/química , Línea Celular Tumoral , Femenino , Humanos , Concentración de Iones de Hidrógeno , Neoplasias Ováricas/química , Compuestos de Sulfhidrilo/química
10.
Anal Chem ; 90(14): 8567-8575, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29902917

RESUMEN

In this work, we demonstrate the feasibility of gold bipyramidal-shaped nanoparticles (AuBPs) to be used as active plasmonic nanoplatforms for the detection of the biotin-streptavidin interaction in aqueous solution via both Localized Surface Plasmon Resonance and Surface Enhanced Raman Scattering (LSPR/SERS). Our proof of concept exploits the precise attachment of the recognition element at the tips of AuBPs, where the electromagnetic field is stronger, which is beneficial to the surface sensitivity of longitudinal LSPR on the local refractive index and to the electromagnetic enhancement of SERS activity, too. Indeed, successive red shifts of the longitudinal LSPR associated with increased local refractive index reveal the attachment of para-aminothiophenol (p-ATP) chemically labeled Biotin to the Au surface and the specific capture of the target protein by biotin-functionalized AuBPs. Finite-Difference Time-Domain simulations based on the reconstructed index of refraction confirm LSPR measurements. However, the molecular identification of the biotin-streptavidin interaction remains elusive by LSPR investigation alone. Remarkably, we succeeded to complement the LSPR detection with reliable SERS measurements which permitted to (a) certify the molecular identification of biotin-streptavidin interaction and (b) extend the limit of detection of streptavidin in solution toward 10-12 M. Finally, to further probe the possibility to implement the AuBPs as dual LSPR-SERS based immunoassays in solution for real clinical diagnostics, we additionally investigated the AuBP's performance to transduce the specific antihuman IgG- human IgG binding event, providing thus a reference design for building unique plasmonic immunoassays for dual-optical detection of target proteins in aqueous solution.


Asunto(s)
Técnicas Biosensibles/instrumentación , Oro/química , Inmunoensayo/instrumentación , Inmunoglobulina G/análisis , Espectrometría Raman/instrumentación , Resonancia por Plasmón de Superficie/instrumentación , Biotina/química , Humanos , Estreptavidina/química
11.
Sensors (Basel) ; 18(9)2018 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-30208609

RESUMEN

Paper-based platforms can be a promising choice as portable sensors due to their low-cost and facile fabrication, ease of use, high sensitivity, specificity and flexibility. By combining the qualities of these 3D platforms with the optical properties of gold nanoparticles, it is possible to create efficient nanodevices with desired biosensing functionalities. In this work, we propose a new plasmonic paper-based dual localized surface plasmon resonance⁻surface-enhanced Raman scattering (LSPR-SERS) nanoplatform with improved detection abilities in terms of high sensitivity, uniformity and reproducibility. Specifically, colloidal gold nanorods (GNRs) with a well-controlled plasmonic response were firstly synthesized and validated as efficient dual LSPR-SERS nanosensors in solution using the p-aminothiophenol (p-ATP) analyte. GNRs were then efficiently immobilized onto the paper via the immersion approach, thus obtaining plasmonic nanoplatforms with a modulated LSPR response. The successful deposition of the nanoparticles onto the cellulose fibers was confirmed by LSPR measurements, which demonstrate the preserved plasmonic response after immobilization, as well as by dark-field microscopy and scanning electron microscopy investigations, which confirm their uniform distribution. Finally, a limit of detection for p-ATP as low as 10-12 M has been achieved by our developed SERS-based paper nanoplatform, proving that our optimized plasmonic paper-based biosensing design could be further considered as an excellent candidate for miniaturized biomedical applications.

12.
BMC Biotechnol ; 15: 114, 2015 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-26718927

RESUMEN

BACKGROUND: We aimed to demonstrate that DF stem cells from impacted molars and canines can be used to improve bone regeneration on titanium implants surfaces. This study highlights the presence of stem cells in DF, their potential to adhere and differentiate into osteoblasts on different types of titanium surfaces. RESULTS: Isolated cells from the harvested DF tissue from impacted canine/molars, expressed stem cells markers. Differentiation into bone cells was induced in presence or absence of BMP-2 and TGFß1. The presence of growth factors until 28 days in medium maintained the cells in an earlier stage of differentiation with a lower level of specific bone proteins and a higher expression of alkaline phosphatase (ALP). Influence of titanium implants with different bioactive coatings, hydroxyapatite (TiHA) and with silicatitanate (TiSiO2), and porous Ti6Al7Nb implants as control (TiCtrl), was studied in terms of cell adhesion and viability. Ti HA implants proved to be more favorable for adhesion and proliferation of DF stem cells in first days of cultivation. The influence of titanium coatings and osteogenic differentiation mediums with or without growth factors were evaluated. Additional BMP-2 in the medium did not allow DF stem cells to develop a more mature phenotype, leaving them in a pre-osteogenic stage. The best sustained mineralization process evaluated by immuno-cytochemical staining, scanning electron microscopy and Ca(2+) quantification was observed for TiHA implants with a higher expression of ALP, collagen and Ca(2+) deposition. Long term culturing (70 days) on titanium surfaces of DF stem cells in standard medium without soluble osteogenic inducers, indicated that HA coating is more favorable, with the acquisition of a more mature osteoblastic phenotype as shown by immunocytochemical staining. These findings demonstrated that even in absence of exogenous osteogenic factors, TiHA implants and in a lesser extent TiCtrl and TiSiO2 implants can induce and sustain osteogenic differentiation of DF stem cells, by their chemical and topographical properties. CONCLUSIONS: Our research demonstrated that DF stem cells have a spontaneous tendency for osteogenic differentiation and can be used for improving bone regeneration on titanium implants surfaces.


Asunto(s)
Regeneración Ósea/fisiología , Implantes Dentales , Saco Dental/citología , Células Madre/citología , Titanio , Adolescente , Adulto , Fosfatasa Alcalina/metabolismo , Diferenciación Celular/fisiología , Células Cultivadas , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/metabolismo , Diente Canino/citología , Durapatita/química , Femenino , Humanos , Células Madre Mesenquimatosas/citología , Diente Molar/citología , Osteoblastos/citología , Osteoblastos/fisiología , Osteogénesis , Adulto Joven
13.
Gels ; 10(4)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38667649

RESUMEN

In this study, bismuth- and iron-embedded carbon xerogels (XG) were obtained using a modified resorcinol formaldehyde sol-gel synthesis method followed by additional enrichment with iron content. Pyrolysis treatment was performed at elevated temperatures under Ar or N2 atmosphere to obtain nanocomposites with different reduction yields (XGAr or XGN). The interest was focused on investigating the extent to which changes in the pyrolysis atmosphere of these nanocomposites impact the structure, morphology, and electrical properties of the material and consequently affect the electroanalytical performance. The structural and morphological particularities derived from X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) measurements revealed the formation of the nanocomposite phases, mostly metal/oxide components. The achieved performances for the two modified electrodes based on XG treated under Ar or N2 atmosphere clearly differ, as evidenced by the electroanalytical parameters determined from the detection of heavy metal cations (Pb2+) or the use of the square wave voltammetry (SWV) technique, biomarkers (H2O2), or amperometry. By correlating the differences obtained from electroanalytical measurements with those derived from morphological, structural, and surface data, a few utmost important aspects were identified. Pyrolysis under Ar atmosphere favors a significant increase in the α-Fe2O3 amount and H2O2 detection performance (sensitivity of 0.9 A/M and limit of detection of 0.17 µM) in comparison with pyrolysis under N2 (sensitivity of 0.5 A/M and limit of detection of 0.36 µM), while pyrolysis under N2 atmosphere leads to an increase in the metallic Bi amount and Pb2+ detection performance (sensitivity of 8.44 × 103 A/M and limit of detection of 33.05 pM) in comparison with pyrolysis under Ar (sensitivity of 6.47·103 A/M and limit of detection of 46.37 pM).

14.
Cryst Growth Des ; 24(11): 4668-4681, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38855579

RESUMEN

New cocrystals of praziquantel with suberic, 3-hydroxybenzoic, benzene-1,2,4,5-tetracarboxylic, trimesic, and 5-hydroxyisophthalic acids were obtained through ball milling experiments. The optimal conditions for the milling process were chosen by changing the solvent volume and the mechanical action time. Supramolecular interactions in the new cocrystals are detailed based on single-crystal X-ray diffraction analysis, confirming the expected formation of hydrogen bonds between the praziquantel carbonyl group and the carboxyl (or hydroxyl) moieties of the coformers. Different structural characterization techniques were performed for all samples, but the praziquantel:suberic acid cocrystal includes a wider range of investigations such as thermal analysis, infrared and X-ray photoelectron spectroscopies, and SEM microscopy. The stability for up to five months was established by keeping it under extreme conditions of temperature and humidity. Solubility studies were carried out for all the new forms disclosed herein and compared with the promising cocrystals previously reported with salicylic, 4-aminosalicylic, vanillic, and oxalic acids. HPLC analyses revealed a higher solubility for most of the new cocrystal forms, as compared to pure praziquantel.

15.
Polymers (Basel) ; 15(8)2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37112047

RESUMEN

In this study we have employed a polymer processing method based on solvent vapor annealing in order to condense relatively large amounts of solvent vapors onto thin films of block copolymers and thus to promote their self-assembly into ordered nanostructures. As revealed by the atomic force microscopy, a periodic lamellar morphology of poly(2-vinylpyridine)-b-polybutadiene and an ordered morphology comprised of hexagonally-packed structures made of poly(2-vinylpyridine)-b-poly(cyclohexyl methacrylate) were both successfully generated on solid substrates for the first time.

16.
ACS Appl Mater Interfaces ; 15(48): 55925-55937, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37983540

RESUMEN

The implementation of metal enhanced fluorescence (MEF) as an efficient detection tool, especially in the near-infrared region of the electromagnetic spectrum, is a rather new direction for diagnostic analytical technologies. In this context, we propose a novel microfluidic plasmonic design based on paper for efficient MEF detection of the "proof-of-concept" biotin-streptavidin recognition interaction. Our design made use of the benefits of gold nanobipyramids (AuBPs), considering the strong enhanced electromagnetic field present at their sharp tips, and filter paper to operate as a natural microfluidic channel due to excellent wicking abilities. The calligraphed plasmonic paper, obtained using a commercial pen filled with AuBPs, was integrated in a robust sandwich optically transparent polydimethylsiloxane chip, exhibiting portability and flexibility while preserving the chip's properties. To place the Alexa 680 fluorophore at an optimal distance from the nanobipyramid substrate, the human IgG-anti-IgG-conjugated biotin sandwich reaction was employed. Thus, upon the capture of Alexa 680-conjugated streptavidin by the biotinylated system, a 1.3-fold average enhancement of the fluorophore's emission was determined by bulk fluorescence measurements. However, the local enhancement factor was considerably higher with values spanning from 5 to 6.3, as proven by mapping the fluorescence emission under both re-scan microscopy and fluorescence lifetime imaging, endorsing the proposed chip's feasibility for bulk MEF biosensing as well as high-resolution MEF bioimaging. Finally, the versatility of our chip was demonstrated by adapting the biosensing protocol for cardiac troponin I biomarker detection, validated using 10 plasma samples collected from pediatric patients and corroborated with a conventional ELISA assay.


Asunto(s)
Técnicas Biosensibles , Biotina , Humanos , Niño , Biotina/química , Estreptavidina/química , Microfluídica , Oro/química , Colorantes Fluorescentes/química , Técnicas Biosensibles/métodos
17.
Gels ; 9(11)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37998958

RESUMEN

Multifunctional materials based on carbon xerogel (CX) with embedded bismuth (Bi) and iron (Fe) nanoparticles are tested for ultrasensitive amperometric detection of lead cation (Pb2+) and hydrogen peroxide (H2O2). The prepared CXBiFe-T nanocomposites were annealed at different pyrolysis temperatures (T, between 600 and 1050 °C) and characterized by X-ray diffraction (XRD), Raman spectroscopy, N2 adsorption, dynamic light scattering (DLS), and electron microscopies (SEM/EDX and TEM). Electrochemical impedance spectroscopy (EIS) and square wave anodic stripping voltammetry (SWV) performed at glassy carbon (GC) electrodes modified with chitosan (Chi)-CXBiFe-T evidenced that GC/Chi-CXBiFe-1050 electrodes exhibit excellent analytical behavior for Pb2+ and H2O2 amperometric detection: high sensitivity for Pb2+ (9.2·105 µA/µM) and outstanding limits of detection (97 fM, signal-to-noise ratio 3) for Pb2+, and remarkable for H2O2 (2.51 µM). The notable improvements were found to be favored by the increase in pyrolysis temperature. Multi-scale parameters such as (i) graphitization, densification of carbon support, and oxide nanoparticle reduction and purification were considered key aspects in the correlation between material properties and electrochemical response, followed by other effects such as (ii) average nanoparticle and Voronoi domain dimensions and (iii) average CXBiFe-T aggregate dimension.

18.
Nanomaterials (Basel) ; 12(7)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35407201

RESUMEN

In this work, we report the fabrication of spheres-in-grating assemblies consisting of equally spaced parallel rectangular grooves filled with fluorescent spheres, by employing embossing and convective self-assembly methods. The developed hierarchical assemblies, when compared to spheres spin-cast on glass, exhibited a blueshift in the photoluminescence spectra, as well as changes in wetting properties induced not only by the patterning process, but also by the nature and size of the utilized spheres. While the patterning process led to increased hydrophobicity, the utilization of spheres with larger diameter improved the hydrophilicity of the fabricated assemblies. Finally, by aiming at the future integration of the spheres-in-grating assemblies as critical components in different technological and medical applications, we report a successful encapsulation of the incorporated spheres within the grating with a top layer of a functional polymer.

19.
Spectrochim Acta A Mol Biomol Spectrosc ; 273: 121069, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35231760

RESUMEN

Nanosensors represent a class of emerging promising nanotools that can be used for the rapid, sensitive and specific detection of relevant molecules such as biomarkers of cancer or other diseases. The sensing platforms that rely on the exceptional physical properties of colloidal gold nanoparticles have gained a special attraction and various architectural designs were proposed with the aim of rapid and real-time detection, identification and monitoring of the capturing events. Moreover, biomarker sensing in liquid samples allows a more facile implementation of the nanosensors by circumventing the need for invasive practices such as biopsies, in favor of non-invasive investigations with potential for use as point-of-care assays. Herein, we propose a sandwich-type surface enhanced Raman scattering (SERS) immuno-nanosensor which is aimed for detecting and quantifying Carcinoembryonic antigen-related cell adhesion molecule 5 (CEA-CAM5), a protein involved in intercellular adhesion and signaling pathways that acts as a tumor marker in several types of cancer. For constructing the proposed system, colloidal gold nano spheres (GNS) and gold nano-urchins (GNU) were chemically synthesized, labeled with SERS active molecules, conjugated with polymers, functionalized with antibodies as capturing substrates and tested in two different sensing configurations: pairs of GNUs-GNUs and GNUs-GNSs. When the target antigen is present in the analyte solution, nanoparticle bridging occurs and a subsequent amplification of the characteristic Raman signal of the label molecule appears due to the formation of hot-spots in interparticle gaps. The capability of observing small analyte concentrations in liquid samples with an easy-to-handle portable Raman device makes the proposed system feasible for rapid, non-invasive and cost-effective clinical or laboratory use.


Asunto(s)
Nanopartículas del Metal , Anticuerpos , Oro , Nanopartículas del Metal/química , Polímeros/química , Espectrometría Raman
20.
Materials (Basel) ; 16(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36614708

RESUMEN

Calcium nitrate is considered a promising accelerator in cement-based composites, with high potential in 3D printing and cold cement concreting. The effect induced by the composition of calcium nitrate tetrahydrate (CN) accelerator into white Portland cement is evaluated here from three perspectives: (1) Fresh cement paste properties in terms of setting time and slump, (2) mechanical properties of hardened cement samples at 7 and 28 days and (3) material characteristics in terms of structure and porosity that further link the presence of the accelerator with the macroscopic performances. The compressive and flexural strength of the hardened samples, evaluated after 7 and 28 days of hydration, indicate a non-monotonous trend with CN concentration. Crystalline phase composition is investigated using X-ray diffraction (XRD). The morphology and texture are analyzed at the flexure interface by visual inspection and electron microscopy. Complementary, the porous features are investigated by NMR-relaxometry on dry and cyclohexane-filled samples. The studies confirm that CN promotes changes in the composition and morphology of hydrates, while a trend of increase in capillary porosity is outlined as well. This competition between multiscale effects may be quantified by NMR and complementary techniques to further clarify the mechanical behavior of such composites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA