Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Int J Mol Sci ; 21(9)2020 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-32349299

RESUMEN

Autologous fat grafting is a surgical technique in which adipose tissue is transferred from one area of the body to another, in order to reconstruct or regenerate damaged or injured tissues. Before reinjection, adipose tissue needs to be purified from blood and cellular debris to avoid inflammation and preserve the graft viability. To perform this purification, different enzymatic and mechanical methods can be used. In this study, we characterized in vitro the product of a closed automatic device based on mechanical disaggregation, named Rigenera®, focusing on two sites of adipose tissue harvesting. At first, we optimized the Rigenera® operating timing, demonstrating that 60 s of treatment allows a higher cellular yield, in terms of the cell number and growth rate. This result optimizes the mechanical disaggregation and it can increase the clinical efficiency of the final product. When comparing the extracted adipose samples from the thigh and abdomen, our results showed that the thigh provides a higher number of mesenchymal-like cells, with a faster replication rate and a higher ability to form colonies. We can conclude that by collecting adipose tissue from the thigh and treating it with the Rigenera® device for 60 s, it is possible to obtain the most efficient product.


Asunto(s)
Tejido Adiposo/citología , Células Madre/citología , Células Madre/metabolismo , Abdomen , Biomarcadores , Diferenciación Celular , Separación Celular , Supervivencia Celular , Humanos , Inmunofenotipificación , Muslo
2.
Phys Med ; 124: 103420, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38970950

RESUMEN

PURPOSE: The purpose of this study is to investigate the dosimetric characteristics of a collimator for minibeam radiotherapy (MBRT) with film dosimetry and Monte Carlo (MC) simulations. The outcome of MBRT with respect to conventional RT using a glioma preclinical model was also evaluated. METHODS: A multi-slit collimator was designed to be used with commercial small animal irradiator. The collimator was built by aligning 0.6 mm wide and 5 mm thick parallel lead leaves at 0.4 mm intervals. Dosimetry characteristics were evaluated by Gafchromic (CG) films and TOPAS Monte Carlo (MC) code. An in vivo experiment was performed using a glioma preclinical model by injecting two million GL261cells subcutaneously and treating with 25 Gy, single fraction, with MBRT and conventional RT. Survival curves and acute radiation damage were measured to compare both treatments. RESULTS: A satisfactory agreement between experimental results and MC simulations were obtained, the measured FWHM and distance between the peaks were respectively 0.431 and 1.098 mm. In vivo results show that MBRT can provide local tumor control for three weeks after RT treatment and a similar survival fraction of open beam radiotherapy. No severe acute effects were seen for the MBRT group. CONCLUSIONS: We developed a minibeam collimator and presented its dosimetric features. Satisfactory agreement between MC and GC films was found with differences consistent with uncertainties due to fabrication and set-up errors. The survival curves of MBRT and open field RT are similar while atoxicity is dramatically lower with MBRT, preliminarily confirming the expected effect.

3.
ACS Appl Mater Interfaces ; 15(9): 12171-12188, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36826830

RESUMEN

Lanthanide-activated fluoride-based nanostructures are extremely interesting multifunctional tools for many modern applications in nanomedicine, e.g., bioimaging, sensing, drug delivery, and photodynamic therapy. Importantly, environmental-friendly preparations using a green chemistry approach, as hydrothermal synthesis route, are nowadays highly desirable to obtain colloidal nanoparticles, directly dispersible in hydrophilic media, as physiological solution. The nanomaterials under investigation are new KY3F10-based citrate-capped core@shell nanostructures activated with several lanthanide ions, namely, Er3+, Yb3+, Nd3+, and Gd3+, prepared as colloidal water dispersions. A new facile microwave-assisted synthesis has been exploited for their preparation, with significant reduction of the reaction times and a fine control of the nanoparticle size. These core@shell multifunctional architectures have been investigated for use as biocompatible and efficient contrast agents for optical, magnetic resonance imaging (MRI) and computerized tomography (CT) techniques. These multifunctional nanostructures are also efficient noninvasive optical nanothermometers. In fact, the lanthanide emission intensities have shown a relevant relative variation as a function of the temperature, in the visible and near-infrared optical ranges, efficiently exploiting ratiometric intensity methods for optical thermometry. Importantly, in contrast with other fluoride hosts, chemical dissolution of KY3F10 citrate-capped nanocrystals in aqueous environment is very limited, of paramount importance for applications in biological fluids. Furthermore, due to the strong paramagnetic properties of lanthanides (e.g., Gd3+), and X-ray absorption of both yttrium and lanthanides, the nanostructures under investigation are extremely useful for MRI and CT imaging. Biocompatibility studies of the nanomaterials have revealed very low cytotoxicity in dfferent human cell lines. All these features point to a successful use of these fluoride-based core@shell nanoarchitectures for simultaneous diagnostics and temperature sensing, ensuring an excellent biocompatibility.


Asunto(s)
Elementos de la Serie de los Lantanoides , Nanoestructuras , Humanos , Elementos de la Serie de los Lantanoides/química , Fluoruros/química , Nanomedicina , Luminiscencia , Nanoestructuras/química
4.
Cancers (Basel) ; 14(20)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36291935

RESUMEN

This paper reports a comprehensive investigation of a magnetic nanoparticle (MNP), named M55, which belongs to a class of innovative doped ferrite nanomaterials, characterized by a self-limiting temperature. M55 is obtained from M48, an MNP previously described by our group, by implementing an additional purification step in the synthesis. M55, after citrate and glucose coating, is named G-M55. The present study aimed to demonstrate the properties of G-M55 as a diagnostic contrast agent for MRI and magnetic particle imaging (MPI), and as an antitumoral agent in magnetic fluid hyperthermia (MFH). Similar specific absorption rate values were obtained by standard MFH and by an MPI apparatus. This result is of interest in relation to the application of localized MFH by MPI apparatus. We demonstrated the biocompatibility of G-M55 in a triple-negative human breast cancer line (MDA-MB-231), and its efficacy as an MFH agent in the same cell line. We also demonstrated the efficacy of MFH treatment with G-M55 in an experimental model of breast cancer. Overall, our results pave the way for the clinical application of G-M55 as an MFH agent in breast cancer therapy, allowing not only efficient treatment by both standard MFH apparatus and MPI but also temperature monitoring.

5.
Nanomaterials (Basel) ; 11(8)2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34443781

RESUMEN

Starting from the mid-1990s, several iron oxide nanoparticles (NPs) were developed as MRI contrast agents. Since their sizes fall in the tenths of a nanometer range, after i.v. injection these NPs are preferentially captured by the reticuloendothelial system of the liver. They have therefore been proposed as liver-specific contrast agents. Even though their unfavorable cost/benefit ratio has led to their withdrawal from the market, innovative applications have recently prompted a renewal of interest in these NPs. One important and innovative application is as diagnostic agents in cancer immunotherapy, thanks to their ability to track tumor-associated macrophages (TAMs) in vivo. It is worth noting that iron oxide NPs may also have a therapeutic role, given their ability to alter macrophage polarization. This review is devoted to the most recent advances in applications of iron oxide NPs in tumor diagnosis and therapy. The intrinsic therapeutic effect of these NPs on tumor growth, their capability to alter macrophage polarization and their diagnostic potential are examined. Innovative strategies for NP-based drug delivery in tumors (e.g., magnetic resonance targeting) will also be described. Finally, the review looks at their role as tracers for innovative, and very promising, imaging techniques (magnetic particle imaging-MPI).

6.
J Colloid Interface Sci ; 596: 332-341, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-33839358

RESUMEN

Bimetallic nanoparticles allow new and synergistic properties compared to the monometallic equivalents, often leading to unexpected results. Here we present on silver-iron nanoparticles coated with polyethylene glycol, which exhibit a high transverse relaxivity (316 ± 13 mM-1s-1, > 3 times that of the most common clinical benchmark based on iron oxide), excellent colloidal stability and biocompatibility in vivo. Ag-Fe nanoparticles are obtained through a one-step, low-cost laser-assisted synthesis, which makes surface functionalization with the desired biomolecules very easy. Besides, Ag-Fe nanoparticles show biodegradation over a few months, as indicated by incubation in the physiological environment. This is crucial for nanomaterials removal from the living organism and, in fact, in vivo biodistribution studies evidenced that Ag-Fe nanoparticles tend to be cleared from liver over a period in which the benchmark iron oxide contrast agent persisted. Therefore, the Ag-Fe NPs offer positive prospects for solving the problems of biopersistence, contrast efficiency, difficulties of synthesis and surface functionalization usually encountered in nanoparticulate contrast agents.


Asunto(s)
Nanopartículas , Plata , Medios de Contraste , Hierro , Imagen por Resonancia Magnética , Polímeros , Distribución Tisular
7.
Nanomaterials (Basel) ; 11(3)2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33803544

RESUMEN

Magnetococcus marinus magnetosome-associated protein MamC, expressed as recombinant, has been proven to mediate the formation of novel biomimetic magnetic nanoparticles (BMNPs) that are successful drug nanocarriers for targeted chemotherapy and hyperthermia agents. These BMNPs present several advantages over inorganic magnetic nanoparticles, such as larger sizes that allow the former to have larger magnetic moment per particle, and an isoelectric point at acidic pH values, which allows both the stable functionalization of BMNPs at physiological pH value and the molecule release at acidic (tumor) environments, simply based on electrostatic interactions. However, difficulties for BMNPs cell internalization still hold back the efficiency of these nanoparticles as drug nanocarriers and hyperthermia agents. In the present study we explore the enhanced BMNPs internalization following upon their encapsulation by poly (lactic-co-glycolic) acid (PLGA), a Food and Drug Administration (FDA) approved molecule. Internalization is further optimized by the functionalization of the nanoformulation with the cell-penetrating TAT peptide (TATp). Our results evidence that cells treated with the nanoformulation [TAT-PLGA(BMNPs)] show up to 80% more iron internalized (after 72 h) compared to that of cells treated with BMNPs (40%), without any significant decrease in cell viability. This nanoformulation showing optimal internalization is further characterized. In particular, the present manuscript demonstrates that neither its magnetic properties nor its performance as a hyperthermia agent are significantly altered due to the encapsulation. In vitro experiments demonstrate that, following upon the application of an alternating magnetic field on U87MG cells treated with BMNPs and TAT-PLGA(BMNPs), the cytotoxic effect of BMNPs was not affected by the TAT-PLGA enveloping. Based on that, difficulties shown in previous studies related to poor cell uptake of BMNPs can be overcome by the novel nanoassembly described here.

8.
Nanotheranostics ; 5(3): 333-347, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33732604

RESUMEN

During the last few years, for therapeutic purposes in oncology, considerable attention has been focused on a method called magnetic fluid hyperthermia (MFH) based on local heating of tumor cells. In this paper, an innovative, promising nanomaterial, M48 composed of iron oxide-based phases has been tested. M48 shows self-regulating temperature due to the observable second order magnetic phase transition from ferromagnetic to paramagnetic state. A specific hydrophilic coating based on both citrate ions and glucose molecules allows high biocompatibility of the nanomaterial in biological matrices and its use in vivo. MFH mediator efficiency is demonstrated in vitro and in vivo in breast cancer cells and tumors, confirming excellent features for biomedical application. The temperature increase, up to the Curie temperature, gives rise to a phase transition from ferromagnetic to paramagnetic state, promoting a shortage of the r2 transversal relaxivity that allows a switch in the contrast in Magnetic Resonance Imaging (MRI). Combining this feature with a competitive high transversal (spin-spin) relaxivity, M48 paves the way for a new class of temperature sensitive T2 relaxing contrast agents. Overall, the results obtained in this study prepare for a more affordable and tunable heating mechanism preventing the damages of the surrounding healthy tissues and, at the same time, allowing monitoring of the temperature reached.


Asunto(s)
Hipertermia Inducida/métodos , Magnetismo , Nanopartículas del Metal/química , Neoplasias/terapia , Temperatura , Animales , Neoplasias de la Mama/terapia , Línea Celular Tumoral , Femenino , Humanos , Ratones , Difracción de Polvo , Ensayos Antitumor por Modelo de Xenoinjerto
9.
J Colloid Interface Sci ; 579: 186-194, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32590159

RESUMEN

Colloidally stable nanoparticles-based magnetic agents endowed with very high relaxivity and specific absorption rate are extremely desirable for efficient magnetic resonance imaging and magnetic hyperthermia, respectively. Here, we report a water dispersible magnetic agent consisting of zinc-doped superparamagnetic iron oxide nanoparticles (i.e., Zn-SPIONs) of 15 nm size with high saturation magnetization coated with an amphiphilic polymer for effective magnetic resonance imaging and magnetic hyperthermia of glioblastoma cells. These biocompatible polymer-coated Zn-SPIONs had 24 nm hydrodynamic diameter and exhibited high colloidal stability in various aqueous media, very high transverse relaxivity of 471 mM-1 s-1, and specific absorption rate up to 743.8 W g-1, which perform better than most iron oxide nanoparticles reported in the literature, including commercially available agents. Therefore, using these polymer-coated Zn-SPIONs even at low concentrations, T2-weighted magnetic resonance imaging and moderate magnetic hyperthermia of glioblastoma cells under clinically relevant magnetic field were successfully implemented. In addition, the results of this in vitro study suggest the superior potential of Zn-SPIONs as a theranostic nanosystem for brain cancer treatment, simultaneously acting as a contrast agent for magnetic resonance imaging and a heat mediator for localized magnetic hyperthermia.


Asunto(s)
Nanopartículas de Magnetita , Nanopartículas , Medios de Contraste , Humanos , Hipertermia , Nanopartículas Magnéticas de Óxido de Hierro , Imagen por Resonancia Magnética , Polímeros , Zinc
10.
Drug Deliv Transl Res ; 9(1): 215-226, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30569349

RESUMEN

The article concerns the obtainment of liposomal doxorubicin (Dox) in which liposomes are externally modified with a targeting peptide able to drive the formulation in a selective way on membrane receptors overexpressed in tumors. We developed a kit composed by three different vials: (A) a vial containing a sterile, translucent, red dispersion of the liposomal doxorubicin drug (Doxil®), (B) a vial filled with a lyophilized powder of a modified phospholipid with a reactive function (DSPE-Peg-maleimide), and (C) a vial containing a 1-9 bombesin peptide analogue (Cys-BN-AA1) chemically modified to react in stoichiometric ratio respect to DSPE-Peg-maleimide. The chosen peptide is a stable analogue antagonist of the wild-type 1-9 bombesin peptide; it is very stable in serum; maintains high specificity, with nanomolar affinity, towards gastrin release peptide receptors (GRPRs indicated also as BB2); and is overexpressed in some cancer cells. Results on animal studies clearly indicate that in mice treated with the kit product (i.e., pegylated liposomal Dox modified with the bombesin analogue, Doxil-BN-AA1), tumor growth is reduced, with an improved efficacy respect to mice treated with non-modified pegylated liposomal Dox or with saline solution.


Asunto(s)
Antibióticos Antineoplásicos/administración & dosificación , Bombesina/análogos & derivados , Doxorrubicina/análogos & derivados , Neoplasias/tratamiento farmacológico , Receptores Acoplados a Proteínas G/metabolismo , Animales , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacología , Bombesina/química , Línea Celular Tumoral , Doxorrubicina/administración & dosificación , Doxorrubicina/química , Doxorrubicina/farmacología , Composición de Medicamentos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Maleimidas/química , Neoplasias/metabolismo , Fosfatidiletanolaminas/química , Polietilenglicoles/administración & dosificación , Polietilenglicoles/química , Polietilenglicoles/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Nanomedicine (Lond) ; 14(3): 301-316, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30667300

RESUMEN

AIM: To elucidate whether different cytokinetic features (i.e., presence or absence of mitotic activity) may influence cell uptake and distribution of nanocarriers, in vitro tests on liposomes, mesoporous silica nanoparticles, poly(lactide-co-glycolide) nanoparticles and nanohydrogels were carried out on C2C12 murine muscle cells either able to proliferate as myoblasts (cycling cells) or terminally differentiate into myotubes (noncycling cells). MATERIALS & METHODS: Cell uptake and intracellular fate of liposomes, mesoporous silica nanoparticles, poly(lactide-co-glycolide) nanoparticles and nanohydrogels were investigated by confocal fluorescence microscopy and transmission electron microscopy. RESULTS: Nanocarrier internalization and distribution were similar in myoblasts and myotubes; however, myotubes demonstrated a lower uptake capability. CONCLUSION: All nanocarriers proved to be suitably biocompatible for both myoblasts and myotubes. The lower uptake capability of myotubes is probably due to different plasma membrane composition related to the differentiation process.


Asunto(s)
Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/efectos de los fármacos , Nanopartículas/química , Animales , Línea Celular , Portadores de Fármacos/efectos adversos , Liposomas/química , Liposomas/metabolismo , Ratones , Microscopía Confocal , Microscopía Electrónica de Transmisión , Fibras Musculares Esqueléticas/ultraestructura , Mioblastos/ultraestructura , Nanopartículas/ultraestructura
12.
Pharmaceutics ; 11(8)2019 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-31408964

RESUMEN

Choline kinase α1 (ChoKα1) has become an excellent antitumor target. Among all the inhibitors synthetized, the new compound Ff35 shows an excellent capacity to inhibit ChoKα1 activity. However, soluble Ff35 is also capable of inhibiting choline uptake, making the inhibitor not selective for ChoKα1. In this study, we designed a new protocol with the aim of disentangling whether the Ff35 biological action is due to the inhibition of the enzyme and/or to the choline uptake. Moreover, we offer an alternative to avoid the inhibition of choline uptake caused by Ff35, since the coupling of Ff35 to novel biomimetic magnetic nanoparticles (BMNPs) allows it to enter the cell through endocytosis without interacting with the choline transporter. This opens the possibility of a clinical use of Ff35. Our results indicate that Ff35-BMNPs nanoassemblies increase the selectivity of Ff35 and have an antiproliferative effect. Also, we demonstrate the effectiveness of the tandem Ff35-BMNPs and hyperthermia.

13.
Int J Biochem Cell Biol ; 93: 62-73, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29111382

RESUMEN

During last years, evidence has been provided on the involvement of overweight and obesity in the pathogenesis and aggravation of several life-threatening diseases. Here, we demonstrate that, under appropriate administration conditions, polyhedral iron oxide nanoparticles are efficiently and safely taken up by 3T3 cell line-derived adipocytes (3T3 adipocytes) in vitro. Since these nanoparticles proved to effectively produce heat when subjected to alternating magnetic field, 3T3 adipocytes were submitted to superparamagnetic iron oxide nanoparticles-mediated hyperthermia treatment (SMHT), with the aim of modulating their lipid content. Notably, the treatment resulted in a significant delipidation persisting for at least 24h, and in the absence of cell death, damage or dedifferentiation. Interestingly, transcript expression of adipose triglyceride lipase (ATGL), a key gene involved in canonical lipolysis, was not modulated upon SMHT, suggesting the involvement of a novel/alternative mechanism in the effective lipolysis observed. By applying the same experimental conditions successfully used for 3T3 adipocytes, SMHT was able to induce delipidation also in primary cultures of human adipose-derived adult stem cells. The success of this pioneering approach in vitro opens promising perspectives for the application of SMHT in vivo as an innovative safe and physiologically mild strategy against obesity, potentially useful in association with balanced diet and healthy lifestyle.


Asunto(s)
Adipocitos/metabolismo , Células Madre Adultas/metabolismo , Hipertermia Inducida , Lipólisis , Nanopartículas de Magnetita/química , Células 3T3 , Células Madre Adultas/citología , Animales , Humanos , Lipasa/metabolismo , Nanopartículas de Magnetita/efectos adversos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA