Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 290(2): 1141-54, 2015 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-25422320

RESUMEN

Bacteriochlorophyll a biosynthesis requires the stereo- and regiospecific two electron reduction of the C7-C8 double bond of chlorophyllide a by the nitrogenase-like multisubunit metalloenzyme, chlorophyllide a oxidoreductase (COR). ATP-dependent COR catalysis requires interaction of the protein subcomplex (BchX)2 with the catalytic (BchY/BchZ)2 protein to facilitate substrate reduction via two redox active iron-sulfur centers. The ternary COR enzyme holocomplex comprising subunits BchX, BchY, and BchZ from the purple bacterium Roseobacter denitrificans was trapped in the presence of the ATP transition state analog ADP·AlF4(-). Electron paramagnetic resonance experiments revealed a [4Fe-4S] cluster of subcomplex (BchX)2. A second [4Fe-4S] cluster was identified on (BchY/BchZ)2. Mutagenesis experiments indicated that the latter is ligated by four cysteines, which is in contrast to the three cysteine/one aspartate ligation pattern of the closely related dark-operative protochlorophyllide a oxidoreductase (DPOR). In subsequent mutagenesis experiments a DPOR-like aspartate ligation pattern was implemented for the catalytic [4Fe-4S] cluster of COR. Artificial cluster formation for this inactive COR variant was demonstrated spectroscopically. A series of chemically modified substrate molecules with altered substituents on the individual pyrrole rings and the isocyclic ring were tested as COR substrates. The COR enzyme was still able to reduce the B ring of substrates carrying modified substituents on ring systems A, C, and E. However, substrates with a modification of the distantly located propionate side chain were not accepted. A tentative substrate binding mode was concluded in analogy to the related DPOR system.


Asunto(s)
Ferredoxina-NADP Reductasa/biosíntesis , Oxidorreductasas/biosíntesis , Fotosíntesis/genética , Roseobacter/enzimología , Clorofilidas/química , Clorofilidas/metabolismo , Cisteína/química , Espectroscopía de Resonancia por Spin del Electrón , Transporte de Electrón , Ferredoxina-NADP Reductasa/química , Ferredoxina-NADP Reductasa/metabolismo , Nitrogenasa/química , Nitrogenasa/metabolismo , Oxidación-Reducción , Oxidorreductasas/química , Roseobacter/genética
2.
EMBO Rep ; 14(5): 465-72, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23559067

RESUMEN

Defects in primary cilia result in human diseases known as ciliopathies. The retinitis pigmentosa GTPase regulator (RPGR), mutated in the most severe form of the eye disease, is located at the transition zone of the ciliary organelle. The RPGR-interacting partner PDEδ is involved in trafficking of farnesylated ciliary cargo, but the significance of this interaction is unknown. The crystal structure of the propeller domain of RPGR shows the location of patient mutations and how they perturb the structure. The RPGR·PDEδ complex structure shows PDEδ on a highly conserved surface patch of RPGR. Biochemical experiments and structural considerations show that RPGR can bind with high affinity to cargo-loaded PDEδ and exposes the Arl2/Arl3-binding site on PDEδ. On the basis of these results, we propose a model where RPGR is acting as a scaffold protein recruiting cargo-loaded PDEδ and Arl3 to release lipidated cargo into cilia.


Asunto(s)
Factores de Ribosilacion-ADP/química , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/química , Proteínas del Ojo/química , Proteínas de Unión al GTP/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Cilios/fisiología , Secuencia Conservada , Cristalografía por Rayos X , Proteínas del Ojo/genética , Humanos , Metabolismo de los Lípidos , Ratones , Modelos Moleculares , Mutación Missense , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Prenilación de Proteína , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Transporte de Proteínas
3.
J Biol Chem ; 285(11): 8268-77, 2010 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-20075073

RESUMEN

Dark operative protochlorophyllide oxidoreductase (DPOR) catalyzes the light-independent two-electron reduction of protochlorophyllide a to form chlorophyllide a, the last common precursor of chlorophyll a and bacteriochlorophyll a biosynthesis. During ATP-dependent DPOR catalysis the homodimeric ChlL(2) subunit carrying a [4Fe-4S] cluster transfers electrons to the corresponding heterotetrameric catalytic subunit (ChlN/ChlB)(2), which also possesses a redox active [4Fe-4S] cluster. To investigate the transient interaction of both subcomplexes and the resulting electron transfer reactions, the ternary DPOR enzyme holocomplex comprising subunits ChlN, ChlB, and ChlL from the cyanobacterium Prochlorococcus marinus was trapped as an octameric (ChlN/ChlB)(2)(ChlL(2))(2) complex after incubation with the nonhydrolyzable ATP analogs adenosine 5'-(gamma-thio)triphosphate, adenosine 5'-(beta,gamma-imido)triphosphate, or MgADP in combination with AlF(4)(-). Additionally, a mutant ChlL(2) protein, with a deleted Leu(153) in the switch II region also allowed for the formation of a stable octameric complex. Furthermore, efficient complex formation required the presence of protochlorophyllide. Electron paramagnetic resonance spectroscopy of ternary DPOR complexes revealed a reduced [4Fe-4S] cluster located on ChlL(2), indicating that complete ATP hydrolysis is a prerequisite for intersubunit electron transfer. Circular dichroism spectroscopic experiments indicated nucleotide-dependent conformational changes for ChlL(2) after ATP binding. A nucleotide-dependent switch mechanism triggering ternary complex formation and electron transfer was concluded. From these results a detailed redox cycle for DPOR catalysis was deduced.


Asunto(s)
Adenosina Trifosfato/metabolismo , Bacterioclorofilas/biosíntesis , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Fotosíntesis/fisiología , Prochlorococcus/enzimología , Catálisis , Dicroismo Circular , Espectroscopía de Resonancia por Spin del Electrón , Transporte de Electrón/fisiología , Hierro/metabolismo , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , Subunidades de Proteína/metabolismo , Azufre/metabolismo
4.
J Biol Chem ; 284(23): 15530-40, 2009 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-19336405

RESUMEN

Nitrogenase-like light-independent protochlorophyllide oxidoreductase (DPOR) is involved in chlorophyll biosynthesis. Bacteriochlorophyll formation additionally requires the structurally related chlorophyllide oxidoreductase (COR). During catalysis, homodimeric subunit BchL(2) or ChlL(2) of DPOR transfers electrons to the corresponding heterotetrameric catalytic subunit, (BchNB)(2) or (ChlNB)(2). Analogously, subunit BchX(2) of the COR enzymes delivers electrons to subunit (BchYZ)(2). Various chimeric DPOR enzymes formed between recombinant subunits (BchNB)(2) and BchL(2) from Chlorobaculum tepidum or (ChlNB)(2) and ChlL(2) from Prochlorococcus marinus and Thermosynechococcus elongatus were found to be enzymatically active, indicating a conserved docking surface for the interaction of both DPOR protein subunits. Biotin label transfer experiments revealed the interaction of P. marinus ChlL(2) with both subunits, ChlN and ChlB, of the (ChlNB)(2) tetramer. Based on these findings and on structural information from the homologous nitrogenase system, a site-directed mutagenesis approach yielded 10 DPOR mutants for the characterization of amino acid residues involved in protein-protein interaction. Surface-exposed residues Tyr(127) of subunit ChlL, Leu(70) and Val(107) of subunit ChlN, and Gly(66) of subunit ChlB were found essential for P. marinus DPOR activity. Next, the BchL(2) or ChlL(2) part of DPOR was exchanged with electron-transferring BchX(2) subunits of COR and NifH(2) of nitrogenase. Active chimeric DPOR was generated via a combination of BchX(2) from C. tepidum or Roseobacter denitrificans with (BchNB)(2) from C. tepidum. No DPOR activity was observed for the chimeric enzyme consisting of NifH(2) from Azotobacter vinelandii in combination with (BchNB)(2) from C. tepidum or (ChlNB)(2) from P. marinus and T. elongatus, respectively.


Asunto(s)
Bacterioclorofilas/biosíntesis , Nitrogenasa/metabolismo , Secuencia de Aminoácidos , Amoníaco/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biotina/metabolismo , Modelos Moleculares , Nitrógeno/metabolismo , Nitrogenasa/química , Nitrogenasa/genética , Conformación Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Synechococcus/enzimología , Synechococcus/genética
5.
FEMS Microbiol Lett ; 290(2): 156-63, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19025572

RESUMEN

The growing resistance against antibiotics demands the search for alternative treatment strategies. Photodynamic therapy is a promising candidate. The natural intermediate of chlorophyll biosynthesis, protochlorophyllide, was produced, purified and tested as a novel photosensitizer for the inactivation of five model organisms including Staphylococcus aureus, Listeria monocytogenes and Yersinia pseudotuberculosis, all responsible for serious clinical infections. When microorganisms were exposed to white light from a tungsten filament lamp (0.1 mW cm(-2)), Gram-positive S. aureus, L. monocytogenes and Bacillus subtilis were photochemically inactivated at concentrations of 0.5 mg L(-1) protochlorophyllide. Transmission electron microscopy revealed a disordered septum formation during cell division and the partial loss of the cytoplasmic cell contents. Gram-negative Y. pseudotuberculosis and Escherichia coli were found to be insensitive to protochlorophyllide treatment due to the permeability barrier of the outer membrane. However, the two bacteria were rendered susceptible to eradication by protochlorophyllide (10 mg L(-1)) upon addition of polymyxin B nonapeptide at 50 and 20 mg L(-1), respectively. The release of DNA and a detrimental rearrangement of the cytoplasm were observed.


Asunto(s)
Bacterias/efectos de los fármacos , Bacterias/efectos de la radiación , Infecciones Bacterianas/tratamiento farmacológico , Fármacos Fotosensibilizantes/farmacología , Protoclorofilida/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Viabilidad Microbiana/efectos de la radiación , Fotoquimioterapia
6.
J Biol Chem ; 283(44): 29873-81, 2008 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-18693243

RESUMEN

Chlorophyll and bacteriochlorophyll biosynthesis requires the two-electron reduction of protochlorophyllide a ringDbya protochlorophyllide oxidoreductase to form chlorophyllide a. A light-dependent (light-dependent Pchlide oxidoreductase (LPOR)) and an unrelated dark operative enzyme (dark operative Pchlide oxidoreductase (DPOR)) are known. DPOR plays an important role in chlorophyll biosynthesis of gymnosperms, mosses, ferns, algae, and photosynthetic bacteria in the absence of light. Although DPOR shares significant amino acid sequence homologies with nitrogenase, only the initial catalytic steps resemble nitrogenase catalysis. Substrate coordination and subsequent [Fe-S] cluster-dependent catalysis were proposed to be unrelated. Here we characterized the first cyanobacterial DPOR consisting of the homodimeric protein complex ChlL(2) and a heterotetrameric protein complex (ChlNB)(2). The ChlL(2) dimer contains one EPR active [4Fe-4S] cluster, whereas the (ChlNB)(2) complex exhibited EPR signals for two [4Fe-4S] clusters with differences in their g values and temperature-dependent relaxation behavior. These findings indicate variations in the geometry of the individual [4Fe-4S] clusters found in (ChlNB)(2). For the analysis of DPOR substrate recognition, 11 synthetic derivatives with altered substituents on the four pyrrole rings and the isocyclic ring plus eight chlorophyll biosynthetic intermediates were tested as DPOR substrates. Although DPOR tolerated minor modifications of the ring substituents on rings A-C, the catalytic target ring D was apparently found to be coordinated with high specificity. Furthermore, protochlorophyllide a, the corresponding [8-vinyl]-derivative and protochlorophyllide b were equally utilized as substrates. Distinct differences from substrate binding by LPOR were observed. Alternative biosynthetic routes for cyanobacterial chlorophyll biosynthesis with regard to the reduction of the C8-vinyl group and the interconversion of a chlorophyll a/b type C7 methyl/formyl group were deduced.


Asunto(s)
Nitrogenasa/genética , Nitrogenasa/fisiología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/fisiología , Oxidorreductasas/fisiología , Prochlorococcus/enzimología , Protoclorofilida/química , Catálisis , Análisis por Conglomerados , Cianobacterias/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Hidrólisis , Cinética , Modelos Biológicos , Oxidorreductasas/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Pirroles/química , Espectrofotometría Ultravioleta/métodos , Especificidad por Sustrato , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA