RESUMEN
Studies in genetically 'identical' individuals indicate that as much as 50% of complex trait variation cannot be traced to genetics or to the environment. The mechanisms that generate this 'unexplained' phenotypic variation (UPV) remain largely unknown. Here, we identify neuronatin (NNAT) as a conserved factor that buffers against UPV. We find that Nnat deficiency in isogenic mice triggers the emergence of a bi-stable polyphenism, where littermates emerge into adulthood either 'normal' or 'overgrown'. Mechanistically, this is mediated by an insulin-dependent overgrowth that arises from histone deacetylase (HDAC)-dependent ß-cell hyperproliferation. A multi-dimensional analysis of monozygotic twin discordance reveals the existence of two patterns of human UPV, one of which (Type B) phenocopies the NNAT-buffered polyphenism identified in mice. Specifically, Type-B monozygotic co-twins exhibit coordinated increases in fat and lean mass across the body; decreased NNAT expression; increased HDAC-responsive gene signatures; and clinical outcomes linked to insulinemia. Critically, the Type-B UPV signature stratifies both childhood and adult cohorts into four metabolic states, including two phenotypically and molecularly distinct types of obesity.
Asunto(s)
Proteínas de la Membrana , Proteínas del Tejido Nervioso , Adaptación Fisiológica , Adulto , Animales , Niño , Histona Desacetilasas , Humanos , Insulina , Proteínas de la Membrana/metabolismo , Ratones , Proteínas del Tejido Nervioso/genética , Obesidad/genética , Obesidad/metabolismoRESUMEN
Huntington's disease (HD) is caused by an expanded CAG repeat leading to the synthesis of an aberrant protein and to the formation of polyglutamine (polyQ)-containing inclusions and aggregates. Limited information is available concerning the association of neuropathological markers with the development of behavioral markers in HD. Using a previously generated transgenic rat model of HD (tgHD rat), we performed association studies on the time-course of behavioral symptoms (motor function, learning, anxiety) and the appearance of striatal atrophy, 1C2 immunopositive aggregates and polyQ recruitment sites, a precursor to these aggregates. At the age of 1 month, tgHD rats exhibited reduced anxiety and improved motor performance, while at 6 months motor impairments and at 9 months cognitive decline occurred. In contrast, polyQ recruitment sites appeared at around 6-9 months of age, indicating that HD-like behavioral markers preceded the appearance of currently detectable neuropathological markers. Interestingly, numerous punctate sites containing polyQ aggregates were also seen in areas receiving afferents from the densely recruiting regions suggesting either transport of recruitment-competent aggregates to terminal projections where initially 1C2 positive aggregates were formed or different internal properties of neurons in different regions. Furthermore, striatal atrophy was observed at the age of 12 months. Taken together, our findings support the hypothesis of a dynamic process leading to region- and age-specific polyQ recruitment and aggregation. The dissociation of onset between behavioral and neuropathological markers is suggestive of as yet undetected processes, which contribute to the early phenotype of these HD transgenic rats.