Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Eur J Immunol ; : e2350792, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727188

RESUMEN

Loss of perfusion in the burn wound might cause wound deepening and impaired healing. We previously showed persistent microvascular thrombosis coinciding with intraluminal neutrophils extracellular traps in human burned skin. This study investigates the presence of intraluminal citrullinated histone 3 (H3cit) from different cellular origins (neutrophils, monocytes, and lymphocytes) in relation to microvascular thrombosis of burn wounds. Eschar was obtained from burn patients (n = 18) 6-40 days postburn with a mean total burned body surface area of 23%. Microvascular presence of tissue factor (TF), factor XII (FXII) and thrombi was assessed by immunohistochemistry. Intramicrovascular cell death was analyzed via immunofluorescent microscopy, combining antibodies for neutrophils (MPO), monocytes (CD14), and lymphocytes (CD45) with endothelial cell markers CD31 and H3cit. Significantly increased microvascular expression of TF, FXII, and thrombi (CD31+) was found in all eschar samples compared with control uninjured skin. Release of H3cit from different cellular origins was observed in the lumen of the dermal microvasculature in the eschar tissue 7-40 days postburn, with release from neutrophilic origin being 2.7 times more abundant. Intraluminal presence of extracellular H3cit colocalizing with either MPO, CD14, or CD45 is correlated to increased microvascular thrombosis in eschar of burn patients.

2.
Int J Mol Sci ; 22(5)2021 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-33802460

RESUMEN

The lysosomal storage disease Niemann-Pick type C (NPC) is caused by impaired cholesterol efflux from lysosomes, which is accompanied by secondary lysosomal accumulation of sphingomyelin and glucosylceramide (GlcCer). Similar to Gaucher disease (GD), patients deficient in glucocerebrosidase (GCase) degrading GlcCer, NPC patients show an elevated glucosylsphingosine and glucosylated cholesterol. In livers of mice lacking the lysosomal cholesterol efflux transporter NPC1, we investigated the expression of established biomarkers of lipid-laden macrophages of GD patients, their GCase status, and content on the cytosol facing glucosylceramidase GBA2 and lysosomal integral membrane protein type B (LIMP2), a transporter of newly formed GCase to lysosomes. Livers of 80-week-old Npc1-/- mice showed a partially reduced GCase protein and enzymatic activity. In contrast, GBA2 levels tended to be reciprocally increased with the GCase deficiency. In Npc1-/- liver, increased expression of lysosomal enzymes (cathepsin D, acid ceramidase) was observed as well as increased markers of lipid-stressed macrophages (GPNMB and galectin-3). Immunohistochemistry showed that the latter markers are expressed by lipid laden Kupffer cells. Earlier reported increase of LIMP2 in Npc1-/- liver was confirmed. Unexpectedly, immunohistochemistry showed that LIMP2 is particularly overexpressed in the hepatocytes of the Npc1-/- liver. LIMP2 in these hepatocytes seems not to only localize to (endo)lysosomes. The recent recognition that LIMP2 harbors a cholesterol channel prompts the speculation that LIMP2 in Npc1-/- hepatocytes might mediate export of cholesterol into the bile and thus protects the hepatocytes.


Asunto(s)
Glucosilceramidasa/metabolismo , Hígado/metabolismo , Proteínas de Membrana de los Lisosomas/metabolismo , Enfermedad de Niemann-Pick Tipo C/metabolismo , Receptores Depuradores/metabolismo , Animales , Transporte Biológico/fisiología , Catepsina D/metabolismo , Línea Celular , Línea Celular Tumoral , Enfermedad de Gaucher/metabolismo , Glucosilceramidas/metabolismo , Células Hep G2 , Hepatocitos/metabolismo , Humanos , Lisosomas/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Endogámicos BALB C , Células RAW 264.7 , Esfingomielinas/metabolismo
3.
Ann Med Surg (Lond) ; 85(4): 1262-1269, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37113922

RESUMEN

Arteriovenous malformations (AVMs) are rare congenital disorders characterized by episodes of disproportionate growth that can cause pain and severe bleeding, with microvascular proliferation (MVP) associated with these episodes. Hormonal influences can also worsen the symptoms in patients with AVM. Case presentation: This case report presents a female patient with congenital vascular malformations of the left hand since birth, whose symptoms worsened during puberty and pregnancy, ultimately leading to amputation of the left hand due to unbearable pain and loss of function. Pathologic analysis revealed substantial MVP activity within the tissues of the AVM, with an expression of receptors for estrogen, growth hormone, and follicle-stimulating hormone in the vessels of the AVM, including MVP areas. Resected materials not related to pregnancy revealed chronic inflammation and fibrosis but hardly any MVP. Discussion and conclusion: These findings suggest a role for MVP in the progressive growth of AVM during pregnancy, with a potential role for hormonal influences. The case highlights the relationship between AVM symptoms and size during pregnancy and the pathological findings of MVP areas within the AVM with hormone receptor expression on proliferating vessels in resected materials.

4.
Cardiovasc Pathol ; 64: 107524, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36649811

RESUMEN

BACKGROUND: Histopathological studies have shown inflammation, cardiomyocyte injury, and microvascular thrombosis in the ventricular myocardium of patients with coronavirus disease 2019 (COVID-19). However, although atrial dysfunction is common in COVID-19, little is known about histopathological changes in the atria of the heart. We therefore analyzed inflammation, cardiomyocyte injury, and microvascular thrombogenicity in the atria of deceased patients with COVID-19. METHODS: Atrial tissue was obtained from autopsied COVID-19 (n=16) patients and control patients (n=10) and analyzed using immunohistochemistry. The infiltration of CD45+ leukocytes, CD3+ T lymphocytes, CD68+ macrophages, MPO+ neutrophils, and Tryptase+ mast cells were quantified as well as cardiomyocyte damage and microvascular thrombosis. In addition, Tissue Factor (TF) and Factor XII (FXII) were quantified as markers of microvascular thrombogenicity. RESULTS: The numbers of lymphocytes, macrophages, and neutrophils were significantly increased in the atrial myocardium and epicardial atrial adipose tissue of COVID-19 patients compared with the control group. This was accompanied by dispersed cardiomyocyte injury, the occasional presence of microvascular thrombosis, and an increased presence of TF and FXII in the microvascular endothelium. CONCLUSIONS: Severe COVID-19 induces inflammation, cardiomyocyte injury, and microvascular thrombosis in the atria of the heart.


Asunto(s)
Fibrilación Atrial , COVID-19 , Trombosis , Humanos , COVID-19/complicaciones , COVID-19/patología , Inflamación/patología , Atrios Cardíacos/patología , Trombosis/etiología , Trombosis/patología
5.
Hypertension ; 77(1): 135-146, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33222546

RESUMEN

The intracranial arteries play a major role in cerebrovascular disease, but arterial remodeling due to hypertension has not been well described in humans. We aimed to quantify this remodeling for: the basilar artery, the vertebral, internal carotid, middle/anterior (inferior)/posterior cerebral, posterior communicating, and superior cerebellar arteries of the circle of Willis. Ex vivo circle of Willis specimens, selected from individuals with (n=24) and without (n=25) a history of hypertension, were imaged at 7T magnetic resonance imaging using a 3-dimensional gradient-echo sequence. Subsequently, histological analysis was performed. We validated the vessel wall thickness and area measurements from magnetic resonance imaging against histology. Next, we investigated potential differences in vessel wall thickness and area between both groups using both techniques. Finally, using histological analysis, we investigated potential differences in arterial wall stiffness and atherosclerotic plaque severity and load. All analyses were unadjusted. Magnetic resonance imaging and histology showed comparable vessel wall thickness (mean difference: 0.04 mm (limits of agreement:-0.12 to 0.19 mm) and area (0.43 mm2 [-0.97 to 1.8 mm2]) measurements. We observed no statistically significant differences in vessel wall thickness and area between both groups using either technique. Histological analysis showed early and advanced atherosclerotic plaques in almost all arteries for both groups. The arterial wall stiffness was significantly higher for the internal carotid artery in the hypertensive group. Concluding, we did not observe vessel wall thickening in the circle of Willis arteries in individuals with a history of hypertension using either technique. Using histological analysis, we observed a difference in vessel wall composition for the internal carotid artery.


Asunto(s)
Arterias Cerebrales/patología , Hipertensión/patología , Remodelación Vascular/fisiología , Anciano , Autopsia , Arterias Cerebrales/diagnóstico por imagen , Femenino , Humanos , Hipertensión/diagnóstico por imagen , Riñón/patología , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad
6.
Acta Neuropathol Commun ; 7(1): 151, 2019 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-31610812

RESUMEN

Cardiovascular disorders, like atherosclerosis and hypertension, are increasingly known to be associated with vascular cognitive impairment (VCI). In particular, intracranial atherosclerosis is one of the main causes of VCI, although plaque development occurs later in time and is structurally different compared to atherosclerosis in extracranial arteries. Recent data suggest that endothelial cells (ECs) that line the intracranial arteries may exert anti-atherosclerotic effects due to yet unidentified pathways. To gain insights into underlying mechanisms, we isolated post-mortem endothelial cells from both the intracranial basilar artery (BA) and the extracranial common carotid artery (CCA) from the same individual (total of 15 individuals) with laser capture microdissection. RNA sequencing revealed a distinct molecular signature of the two endothelial cell populations of which the most prominent ones were validated by means of qPCR. Our data reveal for the first time that intracranial artery ECs exert an immune quiescent phenotype. Secondly, genes known to be involved in the response of ECs to damage (inflammation, differentiation, adhesion, proliferation, permeability and oxidative stress) are differentially expressed in intracranial ECs compared to extracranial ECs. Finally, Desmoplakin (DSP) and Hop Homeobox (HOPX), two genes expressed at a higher level in intracranial ECs, and Sodium Voltage-Gated Channel Beta Subunit 3 (SCN3B), a gene expressed at a lower level in intracranial ECs compared to extracranial ECs, were shown to be responsive to shear stress and/or hypoxia. With our data we present a set of intracranial-specific endothelial genes that may contribute to its protective phenotype, thereby supporting proper perfusion and consequently may preserve cognitive function. Deciphering the molecular regulation of the vascular bed in the brain may lead to the identification of novel potential intervention strategies to halt vascular associated disorders, such as atherosclerosis and vascular cognitive dysfunction.


Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Células Endoteliales/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Arteria Basilar/metabolismo , Enfermedades Cardiovasculares/inmunología , Arteria Carótida Común/metabolismo , Células Endoteliales/inmunología , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Análisis de Secuencia de ARN , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA