Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biosens Bioelectron ; 257: 116322, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38678789

RESUMEN

Electrochemiluminescence (ECL) is a bioanalytical technique with numerous advantages, including the potential for high temporal and spatial resolution, a high signal-to-noise ratio, a broad dynamic range, and rapid measurement capabilities. To reduce the complexity of a multi-electrode approach, we use a single-electrode electrochemiluminescence (SE-ECL) configuration to achieve the simultaneous emission and detection of multiple colors for applications that require multiplexed detection of several analytes. This method exploits intrinsic differences in the electric potential applied along single electrodes built into electrochemical cells, enabling the achievement of distinct colors through selective excitation of ECL luminophores. We present results on the optimization of SE-ECL intensity for different channel lengths and widths, with sum intensities being 5 times larger for 6 cm vs. 2 cm channels and linearly increasing with the width of the channels. Furthermore, we demonstrated for the first time that applying Alternating Current (AC) voltage within the single electrode setup for driving the ECL reactions has a dramatic effect on the emitted light intensity, with square waveforms resulting in higher intensities vs sine waveforms. Additionally, multiplexed multicolor SE-ECL on a 6.5 mm × 3.6 mm CMOS semiconductor image sensor was demonstrated for the first time, with the ability to simultaneously distinguish four different colors, leading to the ability to measure multiple analytes.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Diseño de Equipo , Mediciones Luminiscentes , Técnicas Biosensibles/instrumentación , Mediciones Luminiscentes/instrumentación , Técnicas Electroquímicas/instrumentación , Miniaturización , Color , Electrodos , Semiconductores , Humanos
2.
Biosens Bioelectron ; 254: 116200, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38518562

RESUMEN

Detection of microbial pathogens is important for food safety reasons, and for monitoring sanitation in laboratory environments and health care settings. Traditional detection methods such as culture-based and nucleic acid-based methods are time-consuming, laborious, and require expensive laboratory equipment. Recently, ATP-based bioluminescence methods were developed to assess surface contamination, with commercial products available. In this study, we introduce a biosensor based on a CMOS image sensor for ATP-mediated chemiluminescence detection. The original lens and IR filter were removed from the CMOS sensor revealing a 12 MP periodic microlens/pixel array on an area of 6.5 mm × 3.6 mm. UltraSnap swabs are used to collect samples from solid surfaces including personal electronic devices, and office and laboratory equipment. Samples mixed with chemiluminescence reagents were placed directly on the surface of the image sensor. Close proximity of the sample to the photodiode array leads to high photon collection efficiency. The population of microorganisms can be assessed and quantified by analyzing the intensity of measured chemiluminescence. We report a linear range and limit of detection for measuring ATP in UltraSnap buffer of 10-1000 nM and 225 fmol, respectively. The performance of the CMOS-based device was compared to a commercial luminometer, and a high correlation with a Pearson's correlation coefficient of 0.98589 was obtained. The Bland-Altman plot showed no significant bias between the results of the two methods. Finally, microbial contamination of different surfaces was analyzed with both methods, and the CMOS biosensor exhibited the same trend as the commercial luminometer.


Asunto(s)
Técnicas Biosensibles , Técnicas Biosensibles/métodos , Semiconductores , Adenosina Trifosfato
3.
ACS Appl Bio Mater ; 7(3): 1878-1887, 2024 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-38414330

RESUMEN

Cancer is one of the most actively researched diseases having a high mortality rate when not detected at an early stage. Thus, rapid, simultaneous, and sensitive quantification of cancer biomarkers plays an important role in early diagnosis, with patient impact to disability adjusted life years. Herein, a diatomite-based SERS flexible platform for the rapid and sensitive detection of circulating cancer-specific protein biomarkers in serum is presented. In this approach, diatomite/AgNPs strips with maximum SERS activity prepared using the layer-by-layer (LbL) technique were modified with specific antibodies, and specific antigens (HER2, CA15-3, PSA, and MUC4) were captured and detected. By using Raman probes specific to the captured antigens in serum, a SERS limit of detection (LOD) of 0.1 ng/mL was measured (calculated LOD < 0.1 ng/mL). This value is lower than the cutoff amount of cancer antigens in the person's blood. The specificity for the antigens of each antibody was calculated to be higher than 95%. As a result, an immunosensor for rapid detection of cancer biomarkers in serum with good specificity, high sensitivity, good reproducibility, and low cost has been demonstrated. Overall, we show that the prepared diatomite-based SERS substrate with a high surface-to-volume ratio is a useable platform for immunoassay tests.


Asunto(s)
Técnicas Biosensibles , Tierra de Diatomeas , Neoplasias , Humanos , Biomarcadores de Tumor , Reproducibilidad de los Resultados , Inmunoensayo , Anticuerpos , Neoplasias/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA