Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Hepatol ; 81(1): 108-119, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38460794

RESUMEN

BACKGROUND & AIMS: In the developing liver, bipotent epithelial progenitor cells undergo lineage segregation to form hepatocytes, which constitute the bulk of the liver parenchyma, and biliary epithelial cells (cholangiocytes), which comprise the bile duct (a complex tubular network that is critical for normal liver function). Notch and TGFß signalling promote the formation of a sheet of biliary epithelial cells, the ductal plate, that organises into discontinuous tubular structures. How these structures elongate and connect to form a continuous duct remains undefined. We aimed to define the mechanisms by which the ductal plate transitions from a simple sheet of epithelial cells into a complex and connected bile duct. METHODS: By combining single-cell RNA sequencing of embryonic mouse livers with genetic tools and organoid models we functionally dissected the role of planar cell polarity in duct patterning. RESULTS: We show that the planar cell polarity protein VANGL2 is expressed late in intrahepatic bile duct development and patterns the formation of cell-cell contacts between biliary cells. The patterning of these cell contacts regulates the normal polarisation of the actin cytoskeleton within biliary cells and loss of Vangl2 function results in the abnormal distribution of cortical actin remodelling, leading to the failure of bile duct formation. CONCLUSIONS: Planar cell polarity is a critical step in the post-specification sculpture of the bile duct and is essential for establishing normal tissue architecture. IMPACT AND IMPLICATIONS: Like other branched tissues, such as the lung and kidney, the bile ducts use planar cell polarity signalling to coordinate cell movements; however, how these biochemical signals are linked to ductular patterning remains unclear. Here we show that the core planar cell polarity protein VANGL2 patterns how cell-cell contacts form in the mammalian bile duct and how ductular cells transmit confluent mechanical changes along the length of a duct. This work sheds light on how biological tubes are patterned across mammalian tissues (including within the liver) and will be important in how we promote ductular growth in patients where the duct is mis-patterned or poorly formed.


Asunto(s)
Polaridad Celular , Proteínas del Tejido Nervioso , Animales , Ratones , Polaridad Celular/fisiología , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Células Epiteliales/metabolismo , Células Epiteliales/citología , Hígado/embriología , Hígado/citología , Hígado/metabolismo , Conductos Biliares Intrahepáticos/embriología , Conductos Biliares Intrahepáticos/metabolismo , Conductos Biliares Intrahepáticos/citología , Sistema Biliar/embriología , Sistema Biliar/citología , Sistema Biliar/metabolismo , Transducción de Señal/fisiología
2.
Neuron ; 112(14): 2315-2332.e8, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38795709

RESUMEN

Hungry animals need compensatory mechanisms to maintain flexible brain function, while modulation reconfigures circuits to prioritize resource seeking. In Drosophila, hunger inhibits aversively reinforcing dopaminergic neurons (DANs) to permit the expression of food-seeking memories. Multitasking the reinforcement system for motivation potentially undermines aversive learning. We find that chronic hunger mildly enhances aversive learning and that satiated-baseline and hunger-enhanced learning require endocrine adipokinetic hormone (AKH) signaling. Circulating AKH influences aversive learning via its receptor in four neurons in the ventral brain, two of which are octopaminergic. Connectomics revealed AKH receptor-expressing neurons to be upstream of several classes of ascending neurons, many of which are presynaptic to aversively reinforcing DANs. Octopaminergic modulation of and output from at least one of these ascending pathways is required for shock- and bitter-taste-reinforced aversive learning. We propose that coordinated enhancement of input compensates for hunger-directed inhibition of aversive DANs to preserve reinforcement when required.


Asunto(s)
Reacción de Prevención , Neuronas Dopaminérgicas , Proteínas de Drosophila , Hambre , Hormonas de Insectos , Refuerzo en Psicología , Animales , Neuronas Dopaminérgicas/fisiología , Neuronas Dopaminérgicas/metabolismo , Hambre/fisiología , Reacción de Prevención/fisiología , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Hormonas de Insectos/metabolismo , Ácido Pirrolidona Carboxílico/análogos & derivados , Ácido Pirrolidona Carboxílico/metabolismo , Oligopéptidos , Drosophila melanogaster , Drosophila , Octopamina/metabolismo , Dopamina/metabolismo , Encéfalo/fisiología , Encéfalo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA