Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(28): e202318805, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38687094

RESUMEN

The adhesion of circulating tumor cells (CTCs) to the endothelial lumen and their extravasation to surrounding tissues are crucial in the seeding of metastases and remain the most complex events of the metastatic cascade to study. Integrins expressed on CTCs are major regulators of the extravasation process. This knowledge is primarily derived from animal models and biomimetic systems based on artificial endothelial layers, but these methods have ethical or technical limitations. We present a versatile microfluidic device to study cancer cell extravasation that mimics the endothelial barrier by using a porous membrane functionalized with DNA origami nanostructures (DONs) that display nanoscale patterns of adhesion peptides to circulating cancer cells. The device simulates physiological flow conditions and allows direct visualization of cell transmigration through microchannel pores using 3D confocal imaging. Using this system, we studied integrin-specific adhesion in the absence of other adhesive events. Specifically, we show that the transmigration ability of the metastatic cancer cell line MDA-MB-231 is influenced by the type, distance, and density of adhesion peptides present on the DONs. Furthermore, studies with mixed ligand systems indicate that integrins binding to RGD (arginine-glycine-aspartic acid) and IDS (isoleucine-aspartic acid-serine) did not synergistically enhance the extravasation process of MDA-MB-231 cells.


Asunto(s)
ADN , Células Neoplásicas Circulantes , Humanos , ADN/química , ADN/metabolismo , Células Neoplásicas Circulantes/patología , Células Neoplásicas Circulantes/metabolismo , Línea Celular Tumoral , Técnicas Analíticas Microfluídicas , Nanoestructuras/química , Adhesión Celular , Comunicación Celular
2.
Small ; 19(34): e2207593, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37098631

RESUMEN

For highly abundant silica nanomaterials, detrimental effects on proteins and phospholipids are postulated as critical molecular initiating events that involve hydrogen-bonding, hydrophobic, and/or hydrophilic interactions. Here, large unilamellar vesicles with various well-defined phospholipid compositions are used as biomimetic models to recapitulate membranolysis, a process known to be induced by silica nanoparticles in human cells. Differential analysis of the dominant phospholipids determined in membranes of alveolar lung epithelial cells demonstrates that the quaternary ammonium head groups of phosphatidylcholine and sphingomyelin play a critical and dose-dependent role in vesicle binding and rupture by amorphous colloidal silica nanoparticles. Surface modification by either protein adsorption or by covalent coupling of carboxyl groups suppresses the disintegration of these lipid vesicles, as well as membranolysis in human A549 lung epithelial cells by the silica nanoparticles. Furthermore, molecular modeling suggests a preferential affinity of silanol groups for choline head groups, which is also modulated by the pH value. Biomimetic lipid vesicles can thus be used to better understand specific phospholipid-nanoparticle interactions at the molecular level to support the rational design of safe advanced materials.


Asunto(s)
Nanopartículas , Fosfolípidos , Humanos , Fosfolípidos/química , Liposomas Unilamelares , Dióxido de Silicio/química , Colina , Fosfatidilcolinas/química , Lecitinas , Nanopartículas/química
3.
Chembiochem ; 24(4): e202200602, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36454659

RESUMEN

BP100 is a cationic undecamer peptide with antimicrobial and cell-penetrating activities. The orientation of this amphiphilic α-helix in lipid bilayers was examined under numerous conditions using solid-state 19 F, 15 N and 2 H NMR. At high temperatures in saturated phosphatidylcholine lipids, BP100 lies flat on the membrane surface, as expected. Upon lowering the temperature towards the lipid phase transition, the helix is found to flip into an upright transmembrane orientation. In thin bilayers, this inserted state was stable at low peptide concentration, but thicker membranes required higher peptide concentrations. In the presence of lysolipids, the inserted state prevailed even at high temperature. Molecular dynamics simulations suggest that BP100 monomer insertion can be stabilized by snorkeling lysine side chains. These results demonstrate that even a very short helix like BP100 can span (and thereby penetrate through) a cellular membrane under suitable conditions.


Asunto(s)
Simulación de Dinámica Molecular , Péptidos , Temperatura , Péptidos/química , Membrana Celular/química , Membrana Dobles de Lípidos/química , Espectroscopía de Resonancia Magnética
4.
Soft Matter ; 19(27): 5150-5159, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37386911

RESUMEN

Proteinaceous amyloids are well known for their widespread pathological roles but lately have emerged also as key components in several biological functions. The remarkable ability of amyloid fibers to form tightly packed conformations in a cross ß-sheet arrangement manifests in their robust enzymatic and structural stabilities. These characteristics of amyloids make them attractive for designing proteinaceous biomaterials for various biomedical and pharmaceutical applications. In order to design customizable and tunable amyloid nanomaterials, it is imperative to understand the sensitivity of the peptide sequence for subtle changes based on amino acid position and chemistry. Here we report our results from four rationally-designed amyloidogenic decapeptides that subtly differ in hydrophobicity and polarity at positions 5 and 6. We show that making the two positions hydrophobic renders the peptide with enhanced aggregation and material properties while introducing polar residues in position 5 dramatically changes the structure and nanomechanical properties of the fibrils formed. A charged residue at position 6, however, abrogates amyloid formation. In sum, we show that subtle changes in the sequence do not make the peptide innocuous but rather sensitive to aggregation, reflected in the biophysical and nanomechanical properties of the fibrils. We conclude that tolerance of peptide amyloid for changes in the sequence, however small they may be, should not be neglected for the effective design of customizable amyloid nanomaterials.


Asunto(s)
Amiloide , Péptidos , Péptidos/química , Amiloide/química , Secuencia de Aminoácidos , Aminoácidos
5.
Proc Natl Acad Sci U S A ; 117(47): 29637-29646, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33154156

RESUMEN

Pinholin S2168 triggers the lytic cycle of bacteriophage φ21 in infected Escherichia coli Activated transmembrane dimers oligomerize into small holes and uncouple the proton gradient. Transmembrane domain 1 (TMD1) regulates this activity, while TMD2 is postulated to form the actual "pinholes." Focusing on the TMD2 fragment, we used synchrotron radiation-based circular dichroism to confirm its α-helical conformation and transmembrane alignment. Solid-state 15N-NMR in oriented DMPC bilayers yielded a helix tilt angle of τ = 14°, a high order parameter (Smol = 0.9), and revealed the azimuthal angle. The resulting rotational orientation places an extended glycine zipper motif (G40xxxS44xxxG48) together with a patch of H-bonding residues (T51, T54, N55) sideways along TMD2, available for helix-helix interactions. Using fluorescence vesicle leakage assays, we demonstrate that TMD2 forms stable holes with an estimated diameter of 2 nm, as long as the glycine zipper motif remains intact. Based on our experimental data, we suggest structural models for the oligomeric pinhole (right-handed heptameric TMD2 bundle), for the active dimer (right-handed Gly-zipped TMD2/TMD2 dimer), and for the full-length pinholin protein before being triggered (Gly-zipped TMD2/TMD1-TMD1/TMD2 dimer in a line).


Asunto(s)
Bacteriófagos/metabolismo , Proteínas Virales/metabolismo , Dicroismo Circular , ADN/metabolismo , Escherichia coli/virología , Glicina/metabolismo , Membrana Dobles de Lípidos/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Proteínas de la Membrana/metabolismo , Conformación Proteica en Hélice alfa/fisiología
6.
Int J Mol Sci ; 23(9)2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35562938

RESUMEN

The lateral pressure profile constitutes an important physical property of lipid bilayers, influencing the binding, insertion, and function of membrane-active peptides, such as antimicrobial peptides. In this study, we demonstrate that the lateral pressure profile can be manipulated using the peptides residing in different regions of the bilayer. A 19F-labeled analogue of the amphiphilic peptide PGLa was used to probe the lateral pressure at different depths in the membrane. To evaluate the lateral pressure profile, we measured the orientation of this helical peptide with respect to the membrane using solid-state 19F-NMR, which is indicative of its degree of insertion into the bilayer. Using this experimental approach, we observed that the depth of insertion of the probe peptide changed in the presence of additional peptides and, furthermore, correlated with their location in the membrane. In this way, we obtained a tool to manipulate, as well as to probe, the lateral pressure profile in membranes.


Asunto(s)
Membrana Dobles de Lípidos , Membrana Dobles de Lípidos/química , Espectroscopía de Resonancia Magnética/métodos
7.
Int J Mol Sci ; 22(18)2021 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-34576320

RESUMEN

A group of seven peptides from spider venom with diverse sequences constitute the latarcin family. They have been described as membrane-active antibiotics, but their lipid interactions have not yet been addressed. Using circular dichroism and solid-state 15N-NMR, we systematically characterized and compared the conformation and helix alignment of all seven peptides in their membrane-bound state. These structural results could be correlated with activity assays (antimicrobial, hemolysis, fluorescence vesicle leakage). Functional synergy was not observed amongst any of the latarcins. In the presence of lipids, all peptides fold into amphiphilic α-helices as expected, the helices being either surface-bound or tilted in the bilayer. The most tilted peptide, Ltc2a, possesses a novel kind of amphiphilic profile with a coiled-coil-like hydrophobic strip and is the most aggressive of all. It indiscriminately permeabilizes natural membranes (antimicrobial, hemolysis) as well as artificial lipid bilayers through the segregation of anionic lipids and possibly enhanced motional averaging. Ltc1, Ltc3a, Ltc4a, and Ltc5a are efficient and selective in killing bacteria but without causing significant bilayer disturbance. They act rather slowly or may even translocate towards intracellular targets, suggesting more subtle lipid interactions. Ltc6a and Ltc7, finally, do not show much antimicrobial action but can nonetheless perturb model bilayers.


Asunto(s)
Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Venenos de Araña/química , Secuencia de Aminoácidos , Animales , Péptidos Catiónicos Antimicrobianos/química , Membrana Celular/metabolismo , Dicroismo Circular , Interacciones Hidrofóbicas e Hidrofílicas , Membrana Dobles de Lípidos/química , Espectroscopía de Resonancia Magnética
8.
Chemistry ; 26(7): 1511-1517, 2020 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-31867761

RESUMEN

Solid-state 19 F NMR is a powerful method to study the interactions of biologically active peptides with membranes. So far, in labelled peptides, the 19 F-reporter group has always been installed on the side chain of an amino acid. Given the fact that monofluoroalkenes are non-hydrolyzable peptide bond mimics, we have synthesized a monofluoroalkene-based dipeptide isostere, Val-Ψ[(Z)-CF=CH]-Gly, and inserted it in the sequence of two well-studied antimicrobial peptides: PGLa and (KIGAKI)3 are representatives of an α-helix and a ß-sheet. The conformations and biological activities of these labeled peptides were studied to assess the suitability of monofluoroalkenes for 19 F NMR structure analysis.


Asunto(s)
Alquenos/química , Péptidos Catiónicos Antimicrobianos/química , Membrana Celular/química , Espectroscopía de Resonancia Magnética , Secuencia de Aminoácidos , Péptidos Catiónicos Antimicrobianos/síntesis química , Flúor/química , Conformación Proteica en Hélice alfa , Coloración y Etiquetado/métodos
9.
Biochemistry ; 56(11): 1680-1695, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28282123

RESUMEN

Hydrophobic mismatch is important for pore-forming amphipathic antimicrobial peptides, as demonstrated recently [Grau-Campistany, A., et al. (2015) Sci. Rep. 5, 9388]. A series of different length peptides have been generated with the heptameric repeat sequence KIAGKIA, called KIA peptides, and it was found that only those helices sufficiently long to span the hydrophobic thickness of the membrane could induce leakage in lipid vesicles; there was also a clear length dependence of the antimicrobial and hemolytic activities. For the original KIA sequences, the cationic charge increased with peptide length. The goal of this work is to examine whether the charge also has an effect on activity; hence, we constructed two further series of peptides with a sequence similar to those of the KIA peptides, but with a constant charge of +7 for all lengths from 14 to 28 amino acids. For both of these new series, a clear length dependence similar to that of KIA peptides was observed, indicating that charge has only a minor influence. Both series also showed a distinct threshold length for peptides to be active, which correlates directly with the thickness of the membrane. Among the longer peptides, the new series showed activities only slightly lower than those of the original KIA peptides of the same length that had a higher charge. Shorter peptides, in which Gly was replaced with Lys, showed activities similar to those of KIA peptides of the same length, but peptides in which Ile was replaced with Lys lost their helicity and were less active.


Asunto(s)
Antibacterianos/química , Péptidos Catiónicos Antimicrobianos/química , Membrana Dobles de Lípidos/química , Oligopéptidos/química , Secuencia de Aminoácidos , Antibacterianos/síntesis química , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/síntesis química , Péptidos Catiónicos Antimicrobianos/farmacología , Eritrocitos/química , Eritrocitos/efectos de los fármacos , Hemólisis/efectos de los fármacos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Peso Molecular , Oligopéptidos/síntesis química , Oligopéptidos/farmacología , Fosfolípidos/química , Conformación Proteica en Hélice alfa , Electricidad Estática , Relación Estructura-Actividad
10.
Biochim Biophys Acta ; 1858(6): 1328-38, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26975251

RESUMEN

The short membrane-active peptide BP100 [KKLFKKILKYL-NH2] is known as an effective antimicrobial and cell penetrating agent. For a functional alanine scan each of the 11 amino acids was replaced with deuterated Ala-d3, one at a time. MIC assays showed that a substitution of Lys did not affect the antimicrobial activity, but it decreased when a hydrophobic residue was replaced. In most cases, a reduction in hydrophobicity led to a decrease in hemolysis, and some peptide analogues had an improved therapeutic index. Circular dichroism showed that BP100 folds as an amphiphilic α-helix in a bilayer. Its alignment was determined from (2)H NMR in oriented membranes of different composition. The azimuthal rotation angle was the same under all conditions, but the average helix tilt angle and the dynamical behavior of the peptide varied in a systematic manner. In POPC/POPG bilayers, with a negative spontaneous curvature, the peptide was found to lie flat on the bilayer surface, and with little wobble. In DMPC/DMPG, with a positive spontaneous curvature, BP100 at higher concentrations became tilted obliquely into the membrane, with the uncharged C-terminus inserted more deeply into the lipid bilayer, experiencing significant fluctuations in tilt angle. In DMPC/DMPG/lyso-MPC, with a pronounced positive spontaneous curvature, the helix tilted even further and became even more mobile. The 11-mer BP100 is obviously too short to form transmembrane pores. We conclude that BP100 operates via a carpet mechanism, whereby the C-terminus gets inserted into the hydrophobic core of the bilayer, which leads to membrane perturbation and induces transient permeability.


Asunto(s)
Proteínas de la Membrana/química , Resonancia Magnética Nuclear Biomolecular/métodos , Oligopéptidos/química , Secuencia de Aminoácidos , Antibacterianos/química , Antibacterianos/farmacología , Membrana Celular/efectos de los fármacos , Dicroismo Circular , Deuterio , Hemólisis/efectos de los fármacos , Membrana Dobles de Lípidos , Pruebas de Sensibilidad Microbiana , Oligopéptidos/farmacología
11.
Biochim Biophys Acta Biomembr ; 1859(12): 2308-2318, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28888369

RESUMEN

SSL-25 (SSLLEKGLDGAKKAVGGLGKLGKDA) is one of the shortest peptides present in human sweat and is produced after the proteolytic processing of the parent peptide dermcidin. Both peptides are reported to have antimicrobial function. To determine the structure of SSL-25 in lipid bilayers, a series of 19F-labeled SSL-25 analogs were synthesized. Circular dichroism (CD) analysis showed that SSL-25 and all of its analogs formed α-helices in the presence of lipid vesicles, thus allowing a detailed analysis via oriented CD and solid-state NMR. The results suggest that SSL-25 resides on the membrane surface with a slight helix tilt angle. A detailed 19F NMR analysis revealed that SSL-25 does not form a continuous helix. The α-helical structure of the N-terminal part of the peptide was preserved in membranes of different lipid compositions and at various peptide-to-lipid molar ratios, but the C-terminus was disordered and did not fold into a well-defined α-helical conformation. Furthermore, the NMR results showed that SSL-25 resides on the membrane surface and does not re-orient into the membrane in response to changes in either peptide concentration or membrane composition. SSL-25 does not aggregate and remains fully mobile within the membrane bilayer, as shown by 19F NMR. SSL-25 has a high binding affinity toward bilayers mimicking bacterial lipid compositions, but does not bind to mammalian model membranes containing cholesterol. These observations may explain the selectivity of this peptide for bacterial membranes, and they are also in line with basic biophysical considerations on spontaneous lipid curvature and the general effect of cholesterol on peptide/lipid interactions.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/química , Membrana Celular/química , Membrana Dobles de Lípidos/química , Péptidos/química , Sudor/química , Secuencia de Aminoácidos , Bacterias/química , Cardiolipinas/química , Colesterol/química , Dimiristoilfosfatidilcolina/química , Flúor/química , Humanos , Isótopos , Espectroscopía de Resonancia Magnética , Péptidos/aislamiento & purificación , Fosfatidiletanolaminas/química , Fosfatidilgliceroles/química , Unión Proteica , Conformación Proteica en Hélice alfa , Pliegue de Proteína , Proteolisis
12.
Plant Cell Physiol ; 58(1): 71-85, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28173585

RESUMEN

Actin filaments are essential for the integrity of the cell membrane. In addition to this structural role, actin can modulate signaling by altering polar auxin flow. On the other hand, the organization of actin filaments is modulated by auxin constituting a self-referring signaling hub. Although the function of this auxin­actin oscillator is not clear, there is evidence for a functional link with stress signaling activated by the NADPH oxidase Respiratory burst oxidase Homolog (RboH). In the current work, we used the cell-penetrating peptide BP100 to induce a mild and transient perturbation of membrane integrity. We followed the response of actin to the BP100 uptake in a green fluorescent protein (GFP)-tagged actin marker line of tobacco Bright Yellow 2 (BY-2) cells by spinning disc confocal microscopy. We observed that BP100 enters in a stepwise manner and reduces the extent of actin remodeling. This actin 'freezing' can be rescued by the natural auxin IAA, and mimicked by the auxin-efflux inhibitor 1-napthylphthalamic acid (NPA). We further tested the role of the membrane-localized NADPH oxidase RboH using the specific inhibitor diphenyl iodonium (DPI), and found that DPI acts antagonistically to BP100, although DPI alone can induce a similar actin 'freezing' as well. We propose a working model, where the mild violation of membrane integrity by BP100 stimulates RboH, and the resulting elevated levels of reactive oxygen species interfere with actin dynamicity. The mitigating effect of auxin is explained by competition of auxin- and RboH-triggered signaling for superoxide anions. This self-referring auxin­actin­RboH hub might be essential for integrity sensing.


Asunto(s)
Actinas/metabolismo , Péptidos de Penetración Celular/farmacología , Ácidos Indolacéticos/metabolismo , Oligopéptidos/farmacología , Citoesqueleto de Actina/efectos de los fármacos , Citoesqueleto de Actina/metabolismo , Congelación , Proteínas Fluorescentes Verdes/metabolismo , Modelos Biológicos , Compuestos Onio/farmacología , Nicotiana/efectos de los fármacos , Nicotiana/metabolismo
13.
Acc Chem Res ; 49(2): 184-92, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26756718

RESUMEN

The structures of membrane-bound polypeptides are intimately related to their functions and may change dramatically with the lipid environment. Circular dichroism (CD) is a rapid analytical method that requires relatively low amounts of material and no labeling. Conventional CD is routinely used to monitor the secondary structure of peptides and proteins in solution, for example, in the presence of ligands and other binding partners. In the case of membrane-active peptides and transmembrane proteins, these measurements can be applied to, and remain limited to, samples containing detergent micelles or small sonicated lipid vesicles. Such traditional CD analysis reveals only secondary structures. With the help of an oriented circular dichroism (OCD) setup, however, based on the preparation of macroscopically oriented lipid bilayers, it is possible to address the membrane alignment of a peptide in addition to its conformation. This approach has been mostly used for α-helical peptides so far, but other structural elements are conceivable as well. OCD analysis relies on Moffitt's theory, which predicts that the electronic transition dipole moments of the backbone amide bonds in helical polypeptides are polarized either parallel or perpendicular to the helix axis. The interaction of the electric field vector of the circularly polarized light with these transitions results in an OCD spectrum of a membrane-bound α-helical peptide, which exhibits a characteristic line shape and reflects the angle between the helix axis and the bilayer normal. For parallel alignment of a peptide helix with respect to the membrane surface (S-state), the corresponding "fingerprint" CD band around 208 nm will exhibit maximum negative amplitude. If the helix changes its alignment via an obliquely tilted (T-state) to a fully inserted transmembrane orientation (I-state), the ellipticity at 208 nm decreases and the value approaches zero due to the decreased interactions between the field and the transition dipole. Compared to conventional CD, OCD data are not only collected in the biologically relevant environment of a highly hydrated planar lipid bilayer (whose composition can be varied at will), but in addition it provides information about the tilt angle of the polypeptide in the membrane. It is the method of choice for screening numerous different conditions, such as peptide concentration, lipid composition, membrane additives, pH, temperature, and sample hydration. All these factors have been found to affect the peptide alignment in membrane, while having little or no influence on conformation. In many cases, the observed realignment could be related to biological action, such as pore formation by antimicrobial and cell-penetrating peptides, or to binding events of transmembrane segments of integral membrane proteins. Likewise, any lipid-induced conversion from α-helix to ß-sheeted conformation is readily picked up by OCD and has been interpreted in terms of protein instability or amyloid-formation.


Asunto(s)
Dicroismo Circular/métodos , Membrana Dobles de Lípidos/química , Proteínas de la Membrana/química , Péptidos/química , Estructura Secundaria de Proteína
14.
Biophys J ; 111(10): 2149-2161, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27851939

RESUMEN

Magainin 2 (MAG2) and PGLa are two α-helical antimicrobial peptides found in the skin of the African frog Xenopus laevis. They act by permeabilizing bacterial membranes and exhibit an exemplary synergism. Here, we determined the detailed molecular alignment and dynamical behavior of MAG2 in oriented lipid bilayers by using 2H-NMR on Ala-d3-labeled peptides, which yielded orientation-dependent quadrupolar splittings of the labels. The amphiphilic MAG2 helix was found to lie flat on the membrane surface in 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC)/1,2-dimyristoyl-sn-glycero-3-phosphatidylglycerol (DMPG) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol (POPG), as expected, with a tilt angle close to 90°. This orientation fits well with all-atom molecular-dynamics simulations of MAG2 performed in DMPC and DMPC/DMPG. In the presence of an equimolar amount of PGLa, the NMR analysis showed that MAG2 becames tilted at an angle of 120°, and its azimuthal rotation angle also changes. Since this interaction was found to occur in a concentration range where the peptides per se do not interact with their own type, we propose that MAG2 forms a stable heterodimer with PGLa. Given that the PGLa molecules in the complex are known to be flipped into a fully upright orientation, with a helix tilt close to 180°, they must make up the actual transmembrane pore. We thus suggest that the two negative charges on the C-terminus of the obliquely tilted MAG2 peptides neutralize some of the cationic groups on the upright PGLa helices. This would stabilize the assembly of PGLa into a toroidal pore with an overall reduced charge density, which could explain the mechanism of synergy.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Membrana Celular/metabolismo , Magaininas/química , Magaininas/metabolismo , Simulación de Dinámica Molecular , Sinergismo Farmacológico , Magaininas/farmacología , Espectroscopía de Resonancia Magnética , Conformación Proteica en Hélice alfa
15.
Amino Acids ; 48(3): 887-900, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26614437

RESUMEN

Peptide-based antibiotics might help containing the rising tide of antimicrobial resistance. We developed SB056, a semi-synthetic peptide with a dimeric dendrimer scaffold, active against both Gram-negative and Gram-positive bacteria. Being the mechanism of SB056 attributed to disruption of bacterial membranes, we enhanced the amphiphilic profile of the original, empirically derived sequence [WKKIRVRLSA-NH2] by interchanging the first two residues [KWKIRVRLSA-NH2], and explored the effects of this modification on the interaction of peptide, both in linear and dimeric forms, with model membranes and on antimicrobial activity. Results obtained against Escherichia coli and Staphylococcus aureus planktonic strains, with or without salts at physiological concentrations, confirmed the added value of dendrimeric structure over the linear one, especially at physiological ionic strength, and the impact of the higher amphipathicity obtained through sequence modification on enhancing peptide performances. SB056 peptides also displayed intriguing antibiofilm properties. Staphylococcus epidermidis was the most susceptible strain in sessile form, notably to optimized linear analog lin-SB056-1 and the wild-type dendrimer den-SB056. Membrane affinity of all peptides increased with the percentage of negatively charged lipids and was less influenced by the presence of salt in the case of dendrimeric peptides. The analog lin-SB056-1 displayed the highest overall affinity, even for zwitterionic PC bilayers. Thus, in addition to electrostatics, distribution of charged/polar and hydrophobic residues along the sequence might have a significant role in driving peptide-lipid interaction. Supporting this view, dendrimeric analog den-SB056-1 retained greater membrane affinity in the presence of salt than den-SB056, despite the fact that they bear exactly the same net positive charge.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Antibacterianos/síntesis química , Antibacterianos/metabolismo , Péptidos Catiónicos Antimicrobianos/síntesis química , Péptidos Catiónicos Antimicrobianos/metabolismo , Bacterias/efectos de los fármacos , Membrana Celular/metabolismo , Humanos , Pruebas de Sensibilidad Microbiana
16.
Eur Biophys J ; 45(6): 535-47, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27052218

RESUMEN

PGLa and magainin 2 (MAG2) are amphiphilic α-helical frog peptides with synergistic antimicrobial activity. In vesicle leakage assays we observed the strongest synergy for equimolar mixtures of PGLa and MAG2. This result was consistent with solid-state (15)N-NMR data on the helix alignment in model membranes. The Hill coefficients determined from the vesicle leakage data showed that the heterodimeric (PGLa-MAG2) interactions were stronger than the homodimeric (PGLa-PGLa and MAG2-MAG2) interactions. This result was also reflected in the free energy of dimerization determined from oriented circular dichroism and quantitative solid-state (19)F-NMR analysis.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Magaininas/farmacología , Secuencia de Aminoácidos , Péptidos Catiónicos Antimicrobianos/química , Sinergismo Farmacológico , Magaininas/química , Termodinámica
17.
Biochim Biophys Acta ; 1838(9): 2260-8, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24699372

RESUMEN

Many amphiphilic antimicrobial peptides permeabilize bacterial membranes via successive steps of binding, re-alignment and/or oligomerization. Here, we have systematically compared the lipid interactions of two structurally unrelated peptides: the cyclic ß-pleated gramicidin S (GS), and the α-helical PGLa. (19)F NMR was used to screen their molecular alignment in various model membranes over a wide range of temperatures. Both peptides were found to respond to the phase state and composition of these different samples in a similar way. In phosphatidylcholines, both peptides first bind to the bilayer surface. Above a certain threshold concentration they can re-align and immerse more deeply into the hydrophobic core, which presumably involves oligomerization. Re-alignment is most favorable around the lipid chain melting temperature, and also promoted by decreasing bilayer thickness. The presence of anionic lipids has no influence in fluid membranes, but in the gel phase the alignment states are more complex. Unsaturated acyl chains and other lipids with intrinsic negative curvature prevent re-alignment, hence GS and PGLa do not insert into mixtures resembling bacterial membranes, nor into bacterial lipid extracts. Cholesterol, which is present in high concentrations in animal membranes, even leads to an expulsion of the peptides from the bilayer and prevents their binding altogether. However, a very low cholesterol content of 10% was found to promote binding and re-alignment of both peptides. Overall, these findings show that the ability of amphiphilic peptides to re-align and immerse into a membrane is determined by the physico-chemical properties of the lipids, such as spontaneous curvature. This idea is reinforced by the remarkably similar behavior observed here for two structurally unrelated molecules (with different conformation, size, shape, charge), which further suggests that their activity at the membrane level is largely governed by the properties of the constituent lipids, while the selectivity towards different cell types is additionally ruled by electrostatic attraction between peptide and cell surface. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.


Asunto(s)
Membrana Celular/química , Gramicidina/química , Membrana Dobles de Lípidos/química , Precursores de Proteínas/química , Secuencia de Aminoácidos , Bacterias/química , Bacterias/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Gramicidina/farmacología , Humanos , Lípidos de la Membrana/química , Resonancia Magnética Nuclear Biomolecular , Precursores de Proteínas/farmacología , Estructura Secundaria de Proteína
18.
Biochim Biophys Acta ; 1838(3): 940-9, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24216062

RESUMEN

BP100 is a multifunctional membrane-active peptide of only 11 amino acids, with a high antimicrobial activity, an efficient cell-penetrating ability, and low hemolytic side-effects. It forms an amphiphilic α-helix, similar to other antimicrobial peptides like magainin. However, BP100 is very short and thus unlikely to form membrane-spanning pores as proposed for longer peptides as a mechanism of action. We thus studied the conformation, membrane alignment and dynamical behavior of BP100 in lipid bilayers (DMPC/DMPG), using oriented circular dichroism (OCD) and solid-state (19)F and (15)N NMR. According to OCD and (15)N NMR, the BP100 helix is oriented roughly parallel to the membrane surface, but these methods yield no information on the azimuthal alignment angle or the dynamics of the molecule. To address these questions, a systematic (19)F NMR analysis was performed, which was not straightforward for this short peptide. Only a limited number of positions could be (19)F-labeled, all of which are located on one face of the helix, which was found to lead to artifacts in the data analysis. It was nevertheless possible to reconcile the (19)F NMR data with the OCD and (15)N NMR data by using an advanced dynamical model, in which peptide mobility is described by fluctuating tilt and azimuthal angles with Gaussian distributions. (19)F NMR thus confirmed the regular α-helical conformation of BP100, revealed its azimuthal angle, and described its high mobility in the membrane. Furthermore, the very sensitive (19)F NMR experiments showed that the alignment of BP100 does not vary with peptide concentration over a peptide-to-lipid molar ratio from 1:10 to 1:3000.


Asunto(s)
Membrana Celular/metabolismo , Membrana Dobles de Lípidos/química , Oligopéptidos/química , Membrana Celular/química , Dicroismo Circular , Espectroscopía de Resonancia Magnética
19.
J Biomol NMR ; 61(3-4): 287-98, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25616492

RESUMEN

Membrane composition is a key factor that regulates the destructive activity of antimicrobial peptides and the non-leaky permeation of cell penetrating peptides in vivo. Hence, the choice of model membrane is a crucial aspect in NMR studies and should reflect the biological situation as closely as possible. Here, we explore the structure and dynamics of the short multifunctional peptide BP100 using a multinuclear solid-state NMR approach. The membrane alignment and mobility of this 11 amino acid peptide was studied in various synthetic lipid bilayers with different net charge, fluidity, and thickness, as well as in native biomembranes harvested from prokaryotic and eukaryotic cells. (19)F-NMR provided the high sensitivity and lack of natural abundance background that are necessary to observe a labelled peptide even in protoplast membranes from Micrococcus luteus and in erythrocyte ghosts. Six selectively (19)F-labeled BP100 analogues gave remarkably similar spectra in all of the macroscopically oriented membrane systems, which were studied under quasi-native conditions of ambient temperature and full hydration. This similarity suggests that BP100 has the same surface-bound helical structure and high mobility in the different biomembranes and model membranes alike, independent of charge, thickness or cholesterol content of the system. (31)P-NMR spectra of the phospholipid components did not indicate any bilayer perturbation, so the formation of toroidal wormholes or micellarization can be excluded as a mechanism of its antimicrobial or cell penetrating action. However, (2)H-NMR analysis of the acyl chain order parameter profiles showed that BP100 leads to considerable membrane thinning and thereby local destabilization.


Asunto(s)
Membrana Eritrocítica/metabolismo , Imagen por Resonancia Magnética con Fluor-19/métodos , Micrococcus luteus/metabolismo , Resonancia Magnética Nuclear Biomolecular/métodos , Oligopéptidos/metabolismo , Secuencia de Aminoácidos , Humanos , Membrana Dobles de Lípidos/química , Fosfolípidos/química
20.
J Synchrotron Radiat ; 22(3): 844-52, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25931105

RESUMEN

Synchrotron radiation circular dichroism (SRCD) is a rapidly growing technique for structure analysis of proteins and other chiral biomaterials. UV-CD12 is a high-flux SRCD beamline installed at the ANKA synchrotron, to which it had been transferred after the closure of the SRS Daresbury. The beamline covers an extended vacuum-UV to near-UV spectral range and has been open for users since October 2011. The current end-station allows for temperature-controlled steady-state SRCD spectroscopy, including routine automated thermal scans of microlitre volumes of water-soluble proteins down to 170 nm. It offers an excellent signal-to-noise ratio over the whole accessible spectral range. The technique of oriented circular dichroism (OCD) was recently implemented for determining the membrane alignment of α-helical peptides and proteins in macroscopically oriented lipid bilayers as mimics of cellular membranes. It offers improved spectral quality <200 nm compared with an OCD setup adapted to a bench-top instrument, and accelerated data collection by a factor of ∼3. In addition, it permits investigations of low hydrated protein films down to 130 nm using a rotatable sample cell that avoids linear dichroism artifacts.


Asunto(s)
Dicroismo Circular/instrumentación , Proteínas/química , Proteínas/ultraestructura , Sincrotrones/instrumentación , Transferencia de Energía , Diseño de Equipo , Análisis de Falla de Equipo , Alemania , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA