Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant J ; 118(5): 1455-1474, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38394181

RESUMEN

Class I glutaredoxins (GRXs) are catalytically active oxidoreductases and considered key proteins mediating reversible glutathionylation and deglutathionylation of protein thiols during development and stress responses. To narrow in on putative target proteins, it is mandatory to know the subcellular localization of the respective GRXs and to understand their catalytic activities and putative redundancy between isoforms in the same compartment. We show that in Arabidopsis thaliana, GRXC1 and GRXC2 are cytosolic proteins with GRXC1 being attached to membranes through myristoylation. GRXC3 and GRXC4 are identified as type II membrane proteins along the early secretory pathway with their enzymatic function on the luminal side. Unexpectedly, neither single nor double mutants lacking both GRXs isoforms in the cytosol or the ER show phenotypes that differ from wild-type controls. Analysis of electrostatic surface potentials and clustering of GRXs based on their electrostatic interaction with roGFP2 mirrors the phylogenetic classification of class I GRXs, which clearly separates the cytosolic GRXC1 and GRXC2 from the luminal GRXC3 and GRXC4. Comparison of all four studied GRXs for their oxidoreductase function highlights biochemical diversification with GRXC3 and GRXC4 being better catalysts than GRXC1 and GRXC2 for the reduction of bis(2-hydroxyethyl) disulfide. With oxidized roGFP2 as an alternative substrate, GRXC1 and GRXC2 catalyze the reduction faster than GRXC3 and GRXC4, which suggests that catalytic efficiency of GRXs in reductive reactions depends on the respective substrate. Vice versa, GRXC3 and GRXC4 are faster than GRXC1 and GRXC2 in catalyzing the oxidation of pre-reduced roGFP2 in the reverse reaction.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Citosol , Glutarredoxinas , Glutarredoxinas/metabolismo , Glutarredoxinas/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/enzimología , Citosol/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Vías Secretoras , Filogenia
2.
Chem Res Toxicol ; 37(2): 292-301, 2024 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-38189788

RESUMEN

This study aims to enhance the understanding of the environmental risks associated with nanomaterials, particularly nanofibers. Previous research suggested that silver fibers exhibit higher toxicity (EC50/48h 1.6-8.5 µg/L) compared to spherical silver particles (EC50/48h 43 µg/L). To investigate the hypothesis that toxicity is influenced by the morphology and size of nanomaterials, various silver nanofibers with different dimensions (length and diameter) were selected. The study assessed their toxicity toward Daphnia magna using the 48 h immobilization assay. The EC50 values for the different fibers ranged from 122 to 614 µg/L. Subsequently, the study quantified the uptake and distribution of two representative nanofibers in D. magna neonates by employing digestion and imaging mass spectrometry in the form of laser-ablation-ICP-MS. A novel sample preparation method was utilized, allowing the analysis of whole, intact daphnids, which facilitated the localization of silver material and prevented artifacts. The results revealed that, despite the similar ecotoxicity of the silver fibers, the amount of silver associated with the neonates differed by a factor of 2-3. However, both types of nanofibers were primarily found in the gut of the organisms. In conclusion, the findings of this study do not support the expectation that the morphology or size of silver materials affect their toxicity to D. magna.


Asunto(s)
Nanopartículas del Metal , Contaminantes Químicos del Agua , Animales , Daphnia magna , Plata/toxicidad , Plata/química , Daphnia , Contaminantes Químicos del Agua/toxicidad , Nanopartículas del Metal/química
3.
Environ Sci Technol ; 58(9): 4302-4313, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38394333

RESUMEN

The pollution of the marine environment with plastic debris is expected to increase, where ocean currents and winds cause their accumulation in convergence zones like the North Pacific Subtropical Gyre (NPSG). Surface-floating plastic (>330 µm) was collected in the North Pacific Ocean between Vancouver (Canada) and Singapore using a neuston catamaran and identified by Fourier-transform infrared spectroscopy (FT-IR). Baseline concentrations of 41,600-102,700 items km-2 were found, dominated by polyethylene and polypropylene. Higher concentrations (factors 4-10) of plastic items occurred not only in the NPSG (452,800 items km-2) but also in a second area, the Papaha̅naumokua̅kea Marine National Monument (PMNM, 285,200 items km-2). This second maximum was neither reported previously nor predicted by the applied ocean current model. Visual observations of floating debris (>5 cm; 8-2565 items km-2 and 34-4941 items km-2 including smaller "white bits") yielded similar patterns of baseline pollution (34-3265 items km-2) and elevated concentrations of plastic debris in the NPSG (67-4941 items km-2) and the PMNM (295-3748 items km-2). These findings suggest that ocean currents are not the only factor provoking plastic debris accumulation in the ocean. Visual observations may be useful to increase our knowledge of large-scale (micro)plastic pollution in the global oceans.


Asunto(s)
Monitoreo del Ambiente , Plásticos , Monitoreo del Ambiente/métodos , Océanos y Mares , Océano Pacífico , Espectroscopía Infrarroja por Transformada de Fourier , Residuos/análisis , Canadá
4.
Sci Total Environ ; 926: 171694, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38485005

RESUMEN

To gain better understanding of how the transition to electric vehicles affects road dust (RD) composition, and potential health and environmental risks, it is crucial to analyze the chemical composition of RD and identify its sources. Sources of RD include wear of tire tread (TT), brake wear (BW) and road wear (RW). A relevant component of RD are tire and road wear particles (TRWPs). This literature review compiles data on the chemical bulk composition of RD sources, RD in Asia, Europe and North America and TRWP as a RD component. The focus is on elements such as Cd, Co, Cr, Cu, Ni, Pb, V, and Zn. Although the comparability of global RD data is limited due to differences in sampling and analytical methods, no significant differences in the composition from Asia, Europe, and North America were found for most of the investigated elements studied, except for Cd, Co, and V. Sources of RD were analyzed using elemental markers. On average TT, BW, and RW contributed 3 %, 1 %, and 96 %, respectively. The highest concentrations of TT (9 %) and BW (2 %) were observed in the particle size fraction of RD ≤ 10 µm. It is recommended that these results be verified using additional marker compounds. The chemical composition of TRWPs from different sources revealed that (i) TRWPs isolated from a tunnel dust sample are composed of 31 % TT, 6 % BW, and 62 % RW, and (ii) test material from tire test stands show a similar TT content but different chemical bulk composition likely because e.g., of missing BW. Therefore, TRWPs from test stands need to be chemically characterized prior to their use in hazard testing to validate their representativeness.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA