Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Glob Chang Biol ; 30(5): e17337, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38771026

RESUMEN

Persistently high marine temperatures are escalating and threating marine biodiversity. The Baltic Sea, warming faster than other seas, is a good model to study the impact of increasing sea surface temperatures. Zostera marina, a key player in the Baltic ecosystem, faces susceptibility to disturbances, especially under chronic high temperatures. Despite the increasing number of studies on the impact of global warming on seagrasses, little attention has been paid to the role of the holobiont. Using an outdoor benthocosm to replicate near-natural conditions, this study explores the repercussions of persistent warming on the microbiome of Z. marina and its implications for holobiont function. Results show that both seasonal warming and chronic warming, impact Z. marina roots and sediment microbiome. Compared with roots, sediments demonstrate higher diversity and stability throughout the study, but temperature effects manifest earlier in both compartments, possibly linked to premature Z. marina die-offs under chronic warming. Shifts in microbial composition, such as an increase in organic matter-degrading and sulfur-related bacteria, accompany chronic warming. A higher ratio of sulfate-reducing bacteria compared to sulfide oxidizers was found in the warming treatment which may result in the collapse of the seagrasses, due to toxic levels of sulfide. Differentiating predicted pathways for warmest temperatures were related to sulfur and nitrogen cycles, suggest an increase of the microbial metabolism, and possible seagrass protection strategies through the production of isoprene. These structural and compositional variations in the associated microbiome offer early insights into the ecological status of seagrasses. Certain taxa/genes/pathways may serve as markers for specific stresses. Monitoring programs should integrate this aspect to identify early indicators of seagrass health. Understanding microbiome changes under stress is crucial for the use of potential probiotic taxa to mitigate climate change effects. Broader-scale examination of seagrass-microorganism interactions is needed to leverage knowledge on host-microbe interactions in seagrasses.


Asunto(s)
Microbiota , Zosteraceae , Zosteraceae/microbiología , Raíces de Plantas/microbiología , Sedimentos Geológicos/microbiología , Calor , Calentamiento Global , Océanos y Mares , Bacterias/clasificación , Bacterias/aislamiento & purificación , Estaciones del Año , Cambio Climático
2.
Glob Chang Biol ; 28(12): 3812-3829, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35298052

RESUMEN

Marine coastal zones are highly productive, and dominated by engineer species (e.g. macrophytes, molluscs, corals) that modify the chemistry of their surrounding seawater via their metabolism, causing substantial fluctuations in oxygen, dissolved inorganic carbon, pH, and nutrients. The magnitude of these biologically driven chemical fluctuations is regulated by hydrodynamics, can exceed values predicted for the future open ocean, and creates chemical patchiness in subtidal areas at various spatial (µm to meters) and temporal (minutes to months) scales. Although the role of hydrodynamics is well explored for planktonic communities, its influence as a crucial driver of benthic organism and community functioning is poorly addressed, particularly in the context of ocean global change. Hydrodynamics can directly modulate organismal physiological activity or indirectly influence an organism's performance by modifying its habitat. This review addresses recent developments in (i) the influence of hydrodynamics on the biological activity of engineer species, (ii) the description of chemical habitats resulting from the interaction between hydrodynamics and biological activity, (iii) the role of these chemical habitat as refugia against ocean acidification and deoxygenation, and (iv) how species living in such chemical habitats may respond to ocean global change. Recommendations are provided to integrate the effect of hydrodynamics and environmental fluctuations in future research, to better predict the responses of coastal benthic ecosystems to ongoing ocean global change.


Asunto(s)
Ecosistema , Agua de Mar , Hidrodinámica , Concentración de Iones de Hidrógeno , Océanos y Mares , Agua de Mar/química
3.
Int J Vitam Nutr Res ; 92(5-6): 342-348, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32885741

RESUMEN

Resveratrol (RES) in combination with antioxidant vitamins is reported to be more effective in protecting the cells from oxidative stress rather than any of these antioxidants alone. In continuation to our previous work using resveratrol and vitamin C, our main aim was to evaluate the antioxidant restorative effect using chemical and cellular test systems on resveratrol co-encapsulated vitamin E (VE) within liposomes. Z-average size was less than 135 nm, polydispersity index < 0.3; zeta potential > than ± 30 mV and encapsulation efficiency of RES and VE > 90% and 79% respectively. Chemiluminescence measurement indicated that the antioxidative activity of RES could be increased when VE was additionally loaded into liposomes. Inhibition of AAPH induced luminol enhanced chemiluminescence displayed 90% improvement (P < 0.001) in comparison to control; on the other hand 70% luminescence inhibition of ROS production in isolated blood leukocytes (P < 0.001) was observed. Intracellular oxygen-derived radicals measured by flow cytometry using 2'-7'-dichlorodihydrofluorescein diacetate demonstrated about 1.7 fold (P < 0.05) and 1.5 fold (P < 0.001) enhancement of radical scavenging activity in buffy coats under basal conditions and human umbilical vein endothelial cells after stimulation by H2O2 respectively. The cellular systems evidenced the ability of liposome loaded antioxidants to scavenge ROS in the extra and intracellular space, confirming enhanced antioxidative effectivity of RES in the presence of VE, which did not occur in combination with vitamin C. Hence it might be possible to improve the antioxidative effectivity of RES by other/additional antioxidants.


Asunto(s)
Antioxidantes , Estilbenos , Antioxidantes/farmacología , Ácido Ascórbico/farmacología , Células Endoteliales , Humanos , Peróxido de Hidrógeno , Liposomas , Luminol , Oxígeno , Especies Reactivas de Oxígeno , Resveratrol/farmacología , Estilbenos/farmacología , Vitamina E/farmacología , Vitaminas
4.
PLoS Biol ; 16(9): e2006852, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30180154

RESUMEN

Habitat-forming species sustain biodiversity and ecosystem functioning in harsh environments through the amelioration of physical stress. Nonetheless, their role in shaping patterns of species distribution under future climate scenarios is generally overlooked. Focusing on coastal systems, we assess how habitat-forming species can influence the ability of stress-sensitive species to exhibit plastic responses, adapt to novel environmental conditions, or track suitable climates. Here, we argue that habitat-former populations could be managed as a nature-based solution against climate-driven loss of biodiversity. Drawing from different ecological and biological disciplines, we identify a series of actions to sustain the resilience of marine habitat-forming species to climate change, as well as their effectiveness and reliability in rescuing stress-sensitive species from increasingly adverse environmental conditions.


Asunto(s)
Biodiversidad , Cambio Climático , Ecosistema , Adaptación Fisiológica , Refugio de Fauna , Especificidad de la Especie
5.
Parasitology ; 148(4): 486-494, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33213531

RESUMEN

Trematode prevalence and abundance in hosts are known to be affected by biotic drivers as well as by abiotic drivers. In this study, we used the unique salinity gradient found in the south-western Baltic Sea to: (i) investigate patterns of trematode infections in the first intermediate host, the periwinkle Littorina littorea and in the downstream host, the mussel Mytilus edulis, along a regional salinity gradient (from 13 to 22) and (ii) evaluate the effects of first intermediate host (periwinkle) density, host size and salinity on trematode infections in mussels. Two species dominated the trematode community, Renicola roscovita and Himasthla elongata. Salinity, mussel size and density of infected periwinkles were significantly correlated with R. roscovita, and salinity and density correlated with H. elongata abundance. These results suggest that salinity, first intermediate host density and host size play an important role in determining infection levels in mussels, with salinity being the main major driver. Under expected global change scenarios, the predicted freshening of the Baltic Sea might lead to reduced trematode transmission, which may be further enhanced by a potential decrease in periwinkle density and mussel size.


Asunto(s)
Bivalvos/parasitología , Trematodos/crecimiento & desarrollo , Animales , Países Bálticos , Bivalvos/anatomía & histología , Bivalvos/crecimiento & desarrollo , Mar del Norte , Salinidad , Vinca/crecimiento & desarrollo , Vinca/parasitología
7.
Glob Chang Biol ; 24(9): 4357-4367, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29682862

RESUMEN

Climate change will not only shift environmental means but will also increase the intensity of extreme events, exerting additional stress on ecosystems. While field observations on the ecological consequences of heat waves are emerging, experimental evidence is rare, and lacking at the community level. Using a novel "near-natural" outdoor mesocosms approach, this study tested whether marine summer heat waves have detrimental consequences for macrofauna of a temperate coastal community, and whether sequential heat waves provoke an increase or decrease of sensitivity to thermal stress. Three treatments were applied, defined and characterized through a statistical analysis of 15 years of temperature records from the experimental site: (1) no heat wave, (2) two heat waves in June and July followed by a summer heat wave in August and (3) the summer heat wave only. Overall, 50% of the species showed positive, negative or positive/negative responses in either abundance and/or biomass. We highlight four possible ways in which single species responded to either three subsequent heat waves or one summer heat wave: (1) absence of a response (tolerance, 50% of species), (2) negative accumulative effects by three subsequent heat waves (tellinid bivalve), (3) buffering by proceeding heat waves due to acclimation and/or shifts in phenology (spionid polychaete) and (4) an accumulative positive effect by subsequent heat waves (amphipod). The differential responses to single or sequential heat waves at the species level entailed shifts at the community level. Community-level differences between single and triple heat waves were more pronounced than those between regimes with vs. without heat waves. Detritivory was reduced by the single heat wave while suspension feeding was less common in the triple heat wave regime. Critical extreme events occur already today and will occur more frequently in a changing climate, thus, leading to detrimental impacts on coastal marine systems.


Asunto(s)
Organismos Acuáticos/fisiología , Cambio Climático , Calor/efectos adversos , Invertebrados/fisiología , Animales , Alemania , Estaciones del Año
8.
J Phycol ; 53(1): 44-58, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27711971

RESUMEN

Human-induced ocean warming and acidification have received increasing attention over the past decade and are considered to have substantial consequences for a broad range of marine species and their interactions. Understanding how these interactions shift in response to climate change is particularly important with regard to foundation species, such as the brown alga Fucus vesiculosus. This macroalga represents the dominant habitat former on coastal rocky substrata of the Baltic Sea, fulfilling functions essential for the entire benthic community. Its ability to withstand extensive fouling and herbivory regulates the associated community and ecosystem dynamics. This study tested the interactive effects of future warming, acidification, and seasonality on the interactions of a marine macroalga with potential foulers and consumers. F. vesiculosus rockweeds were exposed to different combinations of conditions predicted regionally for the year 2100 (+∆5°C, +∆700 µatm CO2 ) using multifactorial long-term experiments in novel outdoor benthic mesocosms ("Benthocosms") over 9-12-week periods in four seasons. Possible shifts in the macroalgal susceptibility to fouling and consumption were tested using consecutive bioassays. Algal susceptibility to fouling and grazing varied substantially among seasons and between treatments. In all seasons, warming predominantly affected anti-fouling and anti-herbivory interactions while acidification had a subtle nonsignificant influence. Interestingly, anti-microfouling activity was highest during winter under warming, while anti-macrofouling and anti-herbivory activities were highest in the summer under warming. These contrasting findings indicate that seasonal changes in anti-fouling and anti-herbivory traits may interact with ocean warming in altering F. vesiculosus community composition in the future.


Asunto(s)
Incrustaciones Biológicas , Cadena Alimentaria , Fucus/fisiología , Calentamiento Global , Agua de Mar/química , Alemania , Calor , Concentración de Iones de Hidrógeno , Océanos y Mares
9.
Pharm Res ; 32(2): 702-13, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25213775

RESUMEN

PURPOSE: We investigated the RESS process as a means of simultaneous micronization and cocrystallization of a model drug with poor aqueous solubility. METHODS: 1:1 cocrystals of ibuprofen (IBU) and nicotinamide (NA) were produced with a pilot scale unit for RESS processing.IBU and NA were dissolved in scCO2 at 30 MPa and 50°C. After 24 h, the supercritical solution was expanded at a medium CO2 flow rate of 3.8 kg/h during 60 min into an expansion vessel kept at ambient conditions. Cocrystals were identified with DSC, XRD and confocal Raman microscopy (CRM) and further characterized by SEM, specific surface area, wetting ability, solubility and dissolution testing. RESULTS: Judging by DSC, XRD and CRM, cocrystals with high purity could be produced with the RESS technique. Micronization via RESS was successful, since the specific surface area of RESS cocrystals was increased almost tenfold in comparison to cocrystals produced by slow solvent evaporation. Due to the additional micronization, the mean dissolution time of IBU from RESS cocrystals was decreased. CONCLUSIONS: RESS cocrystallization offers the advantage of combining micronization and cocrystallization in a single production step. For drugs with dissolution-limited bioavailability, RESS cocrystallization may therefore be a superior approach in comparison to established cocrystallization techniques.


Asunto(s)
Cromatografía con Fluido Supercrítico/métodos , Ibuprofeno/síntesis química , Niacinamida/síntesis química , Soluciones Farmacéuticas/síntesis química , Cristalización/métodos , Solubilidad , Difracción de Rayos X/métodos
10.
Biofouling ; 31(4): 363-77, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26023861

RESUMEN

Macroalgae, especially perennial species, are exposed to a seasonally variable fouling pressure. It was hypothesized that macroalgae regulate their antifouling defense to fouling pressure. Over one year, the macrofouling pressure and the chemical anti-macrofouling defense strength of the brown algae Fucus vesiculosus and Fucus serratus were assessed with monthly evaluation. The anti-macrofouling defense was assessed by means of surface-extracted Fucus metabolites tested at near-natural concentrations in a novel in situ bioassay. Additionally, the mannitol content of both Fucus species was determined to assess resource availability for defense production. The surface chemistry of both Fucus species exhibited seasonal variability in attractiveness to Amphibalanus improvisus and Mytilus edulis. Of this variability, 50-60% is explained by a sinusoidal model. Only F. vesiculosus extracts originating from the spring and summer significantly deterred settlement of A. improvisus. The strength of macroalgal antifouling defense did not correlate either with in situ macrofouling pressure or with measured mannitol content, which, however, were never depleted.


Asunto(s)
Fucus/química , Estaciones del Año , Algas Marinas/química , Animales , Fucus/fisiología , Mytilus edulis/fisiología , Agua de Mar/microbiología , Algas Marinas/fisiología , Thoracica/fisiología
11.
Molecules ; 20(12): 22364-82, 2015 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-26703534

RESUMEN

Hydrate formation is a phase transition which can occur during manufacturing processes involving water. This work considers the prevention of hydration of anhydrous olanzapine and hydrate conversions in the presence of water and polymers (polyethyleneglycol; hydroxypropylcellulose; polyvinylpyrrolidone) in forming pellets by wet extrusion and spheronisation. Anhydrous olanzapine was added to water with or without those polymers prior to extrusion with microcrystalline cellulose. Assessment of olanzapine conversion was made by XRP-Diffraction; FTIR spectroscopy; calorimetry (DSC) and microscopy (SEM for crystal size and shape). The addition of water converted the anhydrous form into dihydrate B and higher hydrate; whereas polyethyleneglycol promoted a selective hydrate conversion into the higher hydrate olanzapine form. Both polyvinylpyrrolidone and hydroxypropylcellulose prevented the hydrate transformations of the anhydrous drug; the latter even in the presence of hydrate seeds. This may be explained by the higher H-bond ability; higher network association and higher hydrophobicity of hydroxypropylcellulose by comparison with polyethyleneglycol and polyvinylpyrrolidone; which could contribute to its higher affinity to the crystal surfaces of the hydrate nuclei/initial crystals and promoting steric hindrance to the incorporation of other drug molecules into the crystal lattice; thus, preventing the crystal growth. The addition of microcrystalline cellulose needed for the pellets production (final product) did not eliminate the protector effect of both hydroxypropylcellulose and polyvinylpyrrolidone during pellets' processing and dissolution evaluation.


Asunto(s)
Benzodiazepinas/química , Excipientes/química , Polímeros/química , Agua/química , Celulosa/análogos & derivados , Celulosa/química , Química Farmacéutica/métodos , Cristalización/métodos , Composición de Medicamentos/métodos , Cinética , Olanzapina , Transición de Fase , Povidona/química , Solubilidad , Difracción de Rayos X/métodos
12.
Glob Chang Biol ; 20(3): 765-77, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24273082

RESUMEN

Energy availability and local adaptation are major components in mediating the effects of ocean acidification (OA) on marine species. In a long-term study, we investigated the effects of food availability and elevated pCO2 (ca. 400, 1000 and 3000 µatm) on growth of newly settled Amphibalanus (Balanus) improvisus to reproduction, and on their offspring. We also compared two different populations, which were presumed to differ in their sensitivity to pCO2 due to differing habitat conditions: Kiel Fjord, Germany (Western Baltic Sea) with naturally strong pCO2 fluctuations, and the Tjärnö Archipelago, Sweden (Skagerrak) with far lower fluctuations. Over 20 weeks, survival, growth, reproduction and shell strength of Kiel barnacles were all unaffected by elevated pCO2 , regardless of food availability. Moulting frequency and shell corrosion increased with increasing pCO2 in adults. Larval development and juvenile growth of the F1 generation were tolerant to increased pCO2 , irrespective of parental treatment. In contrast, elevated pCO2 had a strong negative impact on survival of Tjärnö barnacles. Specimens from this population were able to withstand moderate levels of elevated pCO2 over 5 weeks when food was plentiful but showed reduced growth under food limitation. Severe levels of elevated pCO2 negatively impacted growth of Tjärnö barnacles in both food treatments. We demonstrate a conspicuously higher tolerance to elevated pCO2 in Kiel barnacles than in Tjärnö barnacles. This tolerance was carried over from adults to their offspring. Our findings indicate that populations from fluctuating pCO2 environments are more tolerant to elevated pCO2 than populations from more stable pCO2 habitats. We furthermore provide evidence that energy availability can mediate the ability of barnacles to withstand moderate CO2 stress. Considering the high tolerance of Kiel specimens and the possibility to adapt over many generations, near future OA alone does not seem to present a major threat for A. improvisus.


Asunto(s)
Dióxido de Carbono/análisis , Crustáceos/fisiología , Agua de Mar/química , Exoesqueleto/fisiología , Animales , Ecosistema , Alimentos , Concentración de Iones de Hidrógeno , Larva/fisiología , Muda , Océanos y Mares , Reproducción
13.
Philos Trans R Soc Lond B Biol Sci ; 379(1909): 20230171, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39034694

RESUMEN

Marine heatwaves have caused massive mortality in coastal benthic ecosystems, altering community composition. Here, we aim to understand the effects of single and sequential sublethal heatwaves in a temperate benthic ecosystem, investigating their disturbance on various levels of ecological hierarchy, i.e. individual physiology, trophic groups' biomass and ecosystem carbon fluxes. To do so, we performed a near-natural experiment using outdoor benthic mesocosms along spring/summer, where communities were exposed to different thermal regimes: without heatwaves (0HW), with one heatwave (1HW) and with three heatwaves (3HWs). Gastropods were negatively impacted by one single heatwave treatment, but the exposure to three sequential heatwaves caused no response, indicating ecological stress memory. The magnitude of ecosystem carbon fluxes mostly decreased after 1HW, with a marked negative impact on mesograzers' feeding, while the overall intensity of carbon fluxes increased after 3HWs. Consumers' acclimation after the exposure to sequential heatwaves increased grazing activity, representing a threat for the macroalgae biomass. The evaluation of physiological responses and ecological interactions is crucial to interpret variations in community composition and to detect early signs of stress. Our results reveal the spread of heatwave effects along the ecological hierarchical levels, helping to predict the trajectories of ecosystem development.This article is part of the theme issue 'Connected interactions: enriching food web research by spatial and social interactions'.


Asunto(s)
Aclimatación , Ecosistema , Animales , Aclimatación/fisiología , Biomasa , Calor Extremo/efectos adversos , Ciclo del Carbono , Gastrópodos/fisiología , Cadena Alimentaria , Calor/efectos adversos
14.
Biofouling ; 29(6): 661-8, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23755914

RESUMEN

The important role of marine epibiotic biofilms in the interactions of the host with its environment has been acknowledged recently. Previous studies with the temperate brown macroalga Fucus vesiculosus have identified polar and non-polar compounds recovered from the algal surface that have the potential to control such biofilms. Furthermore, both the fouling pressure and the composition of the epibiotic bacterial communities on this macroalga varied seasonally. The extent to which this reflects a seasonal fluctuation of the fouling control mechanisms of the host is, however, unexplored in an ecological context. The present study investigated seasonal variation in the anti-settlement activity of surface extracts of F. vesiculosus against eight biofilm-forming bacteria isolated from rockweed-dominated habitats, including replication of two populations from two geographically distant sites. The anti-settlement activity at both sites was found to vary temporally, reaching a peak in summer/autumn. Anti-settlement activity also showed a consistent and strong difference between sites throughout the year. This study is the first to report temporal variation of antifouling defence originating from ecologically relevant surface-associated compounds.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Incrustaciones Biológicas , Fucus/microbiología , Interacciones Huésped-Patógeno/fisiología , Estaciones del Año , Agua de Mar/microbiología , Bacterias/clasificación , Bacterias/efectos de los fármacos , Bacterias/aislamiento & purificación , Incrustaciones Biológicas/prevención & control , Agentes de Control Biológico , Fucus/metabolismo , Fucus/fisiología , Proyectos Piloto , Propiedades de Superficie , Microbiología del Agua , Xantófilas/metabolismo
15.
Microorganisms ; 11(3)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36985173

RESUMEN

Epibacterial communities on seaweeds are affected by several abiotic factors such as temperature and acidification. Due to global warming, surface seawater temperatures are expected to increase by 0.5-5 °C in the next century. However, how epibacterial communities associated with seaweeds will respond to global warming remains unknown. In this study, we investigated the response of epibacterial communities associated with the invasive Gracilaria vermiculophylla exposed to 3 °C above ambient temperature for 4 months using a benthocosm system in Kiel, Germany, and 16S rRNA gene amplicon sequencing. The results showed that elevated temperature affected the beta-diversity of the epibacterial communities. Some potential seaweed pathogens such as Pseudoalteromonas, Vibrio, Thalassotalea, and Acinetobacter were identified as indicator genera at the elevated temperature level. Thirteen core raw amplicon sequence variants in the elevated temperature group were the same as the populations distributed over a wide geographical range, indicating that these core ASVs may play an important role in the invasive G. vermicullophylla. Overall, this study not only contributes to a better understanding of how epibacterial communities associated with G. vermiculophylla may adapt to ocean warming, but also lays the foundation for further exploration of the interactions between G. vermiculophylla and its epimicrobiota.

16.
Sci Rep ; 13(1): 4923, 2023 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-36966171

RESUMEN

Global warming may alter the dynamics of infectious diseases by affecting important steps in the transmission of pathogens and parasites. In trematode parasites, the emergence of cercarial stages from their hosts is temperature-dependent, being highest around a thermal optimum. If environmental temperatures exceed this optimum as a consequence of global warming, this may affect cercarial transmission. However, our knowledge of cercarial emergence patterns of species from high temperature environments is currently very limited. Here, we investigated the effect of temperature on the emergence of two common trematode species from an abundant mud snail Pirenella cingulata in the Persian Gulf, the warmest sea on Earth. Infected snails were incubated in the laboratory at 6 temperatures from 10 to 40 °C for 3 days. We found an optimal temperature for cercarial emergence of 32.0 °C and 33.5 °C for Acanthotrema tridactyla and Cyathocotylidae gen. sp., respectively, which are the warmest recorded thermal optima for any aquatic trematode species. Emergence of both species dropped at 40 °C, suggesting upper thermal limits to emergence. Overall, Persian Gulf trematodes may be among the most heat-tolerant marine trematode species, indicating a potential for dispersing to regions that will continue to warm in the future.


Asunto(s)
Calor , Trematodos , Animales , Temperatura , Ecosistema , Océano Índico , Caracoles/parasitología , Cercarias
17.
Sci Total Environ ; 863: 160727, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36502976

RESUMEN

Marine bioinvasions are of increasing attention due to their potential of causing ecological and economic loss. The seaweed Gracilaria vermiculophylla has recently invaded the Baltic Sea, where, under certain conditions, it was found to outcompete the native alga Fucus vesiculosus. Parasites of grazers and temperature are among the potential factors which might indirectly modulate the interactions between these co-occurring algae through their single and combined effects on grazing rates. We tested the temperature and parasitism effects on the feeding of the gastropod Littorina littorea on F. vesiculosus vs. G. vermiculophylla. Uninfected and trematode-infected gastropods were exposed to 10, 16, 22, and 28 °C for 4 days while fed with either algae. Faeces production was determined as a proxy for grazing rate, and HSP70 expression, glycogen and lipid concentrations were used to assess the gastropod's biochemical condition. Gracilaria vermiculophylla was grazed more than F. vesiculosus. Trematode infection significantly enhanced faeces production, decreased glycogen concentrations, and increased lipid concentrations in the gastropod. Warming significantly affected glycogen and lipid concentrations, with glycogen peaking at 16 °C and lipids at 22 °C. Although not significant, warming and trematode infection increased HSP70 levels. Increased faeces production in infected snails and higher faeces production by L. littorea fed with G. vermiculophylla compared to those which fed on F. vesiculosus, suggest parasitism as an important indirect modulator of the interaction between these algae. The changes in the gastropod's biochemical condition indicate that thermal stress induced the mobilization of energy reserves, suggesting a possible onset of compensatory metabolism. Finally, glycogen decrease in infected snails compared to uninfected ones might make them more susceptible to thermal stress.


Asunto(s)
Algas Marinas , Caracoles , Animales , Temperatura , Homeostasis , Lípidos
18.
Sci Total Environ ; 858(Pt 3): 159946, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36343811

RESUMEN

Although parasitism is one of the most common species interactions in nature, the role of parasites in their hosts' thermal tolerance is often neglected. This study examined the ability of the trematode Podocotyle atomon to modulate the feeding and stress response of Gammarus locusta towards temperature. To accomplish this, infected and uninfected females and males of Gammarus locusta were exposed to temperatures (2, 6, 10, 14, 18, 22, 26, 30 °C) for six days. Shredding (change in food biomass) and defecation rates (as complementary measure to shredding rate) were measured as proxies for feeding activity. Lipid and glycogen concentrations (energy reserves), catalase (oxidative stress indicator), and phenoloxidase (an immunological response in invertebrates) were additionally measured. Gammarid survival was optimal at 10 °C as estimated by the linear model and was unaffected by trematode infection. Both temperature and sex influenced the direction of infection effect on phenoloxidase. Infected females presented lower phenoloxidase activity than uninfected females at 14 and 18 °C, while males remained unaffected by infection. Catalase activity increased at warmer temperatures for infected males and uninfected females. Higher activity of this enzyme at colder temperatures occurred only for infected females. Infection decreased lipid content in gammarids by 14 %. Infected males had significantly less glycogen than uninfected, while infected females showed the opposite trend. The largest infection effects were observed for catalase and phenoloxidase activity. An exacerbation of catalase activity in infected males at warmer temperatures might indicate (in the long-term) unsustainable, overwhelming, and perhaps lethal conditions in a warming sea. A decrease in phenoloxidase activity in infected females at warmer temperatures might indicate a reduction in the potential for fighting opportunistic infections. Results highlight the relevance of parasites and host sex in organismal homeostasis and provide useful insights into the organismal stability of a widespread amphipod in a warming sea.


Asunto(s)
Anfípodos , Temperatura , Trematodos , Lípidos , Anfípodos/parasitología , Anfípodos/fisiología , Conducta Alimentaria , Masculino , Femenino , Animales , Glucógeno/metabolismo , Estrés Fisiológico
19.
Pharmaceutics ; 14(9)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36145691

RESUMEN

Curcuma longa L. is a traditional medicinal and spice plant containing a variety of lipophilic active substances with promising therapeutic properties. In this work, the solvent properties of supercritical carbon dioxide in a pressure and temperature range of 75-425 bar and 35-75 °C were investigated when Curcuma longa rhizomes were extracted. The three main curcuminoids, namely curcumin, demethoxycurcumin, and bisdemethoxycurcumin, together with the three main constituents of the essential oil, i.e., ar-turmerone, α-turmerone, and ß-turmerone, were analyzed in the resulting extracts. For statistical evaluation, experiments were performed employing a full factorial design, in which flow rate, extraction time, and drug load were kept constant. Within the given conditions, the experimental design revealed an optimum yield of all aforementioned substances, when supercritical carbon dioxide extraction was performed at 425 bar and 75 °C. For comparison, solvent extracts using methanol and n-hexane were prepared and their main components were characterized using LC-MS. The stability of the extracts was monitored upon storage for 6 months at 22 and 40 °C under protection from light. The decomposition of individual compounds was mainly observed in the presence of residual water in the extracts.

20.
Sci Rep ; 12(1): 1174, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-35064187

RESUMEN

To predict global warming impacts on parasitism, we should describe the thermal tolerance of all players in host-parasite systems. Complex life-cycle parasites such as trematodes are of particular interest since they can drive complex ecological changes. This study evaluates the net response to temperature of the infective larval stage of Himasthla elongata, a parasite inhabiting the southwestern Baltic Sea. The thermal sensitivity of (i) the infected and uninfected first intermediate host (Littorina littorea) and (ii) the cercarial emergence, survival, self-propelling, encystment, and infection capacity to the second intermediate host (Mytilus edulis sensu lato) were examined. We found that infection by the trematode rendered the gastropod more susceptible to elevated temperatures representing warm summer events in the region. At 22 °C, cercarial emergence and infectivity were at their optimum while cercarial survival was shortened, narrowing the time window for successful mussel infection. Faster out-of-host encystment occurred at increasing temperatures. After correcting the cercarial emergence and infectivity for the temperature-specific gastropod survival, we found that warming induces net adverse effects on the trematode transmission to the bivalve host. The findings suggest that gastropod and cercariae mortality, as a tradeoff for the emergence and infectivity, will hamper the possibility for trematodes to flourish in a warming ocean.


Asunto(s)
Aclimatación , Organismos Acuáticos/fisiología , Gastrópodos/parasitología , Trematodos/patogenicidad , Infecciones por Trematodos/veterinaria , Animales , Cercarias/aislamiento & purificación , Cercarias/patogenicidad , Cercarias/fisiología , Calentamiento Global , Interacciones Huésped-Parásitos , Calor/efectos adversos , Mytilus edulis , Estaciones del Año , Trematodos/aislamiento & purificación , Trematodos/fisiología , Infecciones por Trematodos/diagnóstico , Infecciones por Trematodos/parasitología , Infecciones por Trematodos/transmisión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA