RESUMEN
Drought tolerance is a highly complex trait controlled by numerous interconnected pathways with substantial variation within and across plant species. This complexity makes it difficult to distill individual genetic loci underlying tolerance, and to identify core or conserved drought-responsive pathways. Here, we collected drought physiology and gene expression datasets across diverse genotypes of the C4 cereals sorghum and maize and searched for signatures defining water-deficit responses. Differential gene expression identified few overlapping drought-associated genes across sorghum genotypes, but using a predictive modeling approach, we found a shared core drought response across development, genotype, and stress severity. Our model had similar robustness when applied to datasets in maize, reflecting a conserved drought response between sorghum and maize. The top predictors are enriched in functions associated with various abiotic stress-responsive pathways as well as core cellular functions. These conserved drought response genes were less likely to contain deleterious mutations than other gene sets, suggesting that core drought-responsive genes are under evolutionary and functional constraints. Our findings support a broad evolutionary conservation of drought responses in C4 grasses regardless of innate stress tolerance, which could have important implications for developing climate resilient cereals.
Asunto(s)
Sorghum , Zea mays , Zea mays/genética , Sorghum/genética , Sequías , Grano Comestible/genética , PoaceaeRESUMEN
Resurrection plants can survive prolonged life without water (anhydrobiosis) in regions with seasonal drying. This desiccation tolerance requires the coordination of numerous cellular processes across space and time, and individual plant tissues face unique constraints related to their function. Here, we analyzed the complex, octoploid genome of the model resurrection plant Craterostigma (C. plantagineum), and surveyed spatial and temporal expression dynamics to identify genetic elements underlying desiccation tolerance. Homeologous genes within the Craterostigma genome have divergent expression profiles, suggesting the subgenomes contribute differently to desiccation tolerance traits. The Craterostigma genome contains almost 200 tandemly duplicated early light-induced proteins, a hallmark trait of desiccation tolerance, with massive upregulation under water deficit. We identified a core network of desiccation-responsive genes across all tissues, but observed almost entirely unique expression dynamics in each tissue during recovery. Roots and leaves have differential responses related to light and photoprotection, autophagy and nutrient transport, reflecting their divergent functions. Our findings highlight a universal set of likely ancestral desiccation tolerance mechanisms to protect cellular macromolecules under anhydrobiosis, with secondary adaptations related to tissue function.
Asunto(s)
Craterostigma , Craterostigma/fisiología , Desecación , Agua/metabolismo , Adaptación Fisiológica/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMEN
Over two years into the COVID-19 pandemic, the human immune response to SARS-CoV-2 during the active disease phase has been extensively studied. However, the long-term impact after recovery, which is critical to advance our understanding SARS-CoV-2 and COVID-19-associated long-term complications, remains largely unknown. Herein, we characterized single-cell profiles of circulating immune cells in the peripheral blood of 100 patients, including convalescent COVID-19 and sero-negative controls. Flow cytometry analyses revealed reduced frequencies of both short-lived monocytes and long-lived regulatory T (Treg) cells within the patients who have recovered from severe COVID-19. sc-RNA seq analysis identifies seven heterogeneous clusters of monocytes and nine Treg clusters featuring distinct molecular signatures in association with COVID-19 severity. Asymptomatic patients contain the most abundant clusters of monocytes and Tregs expressing high CD74 or IFN-responsive genes. In contrast, the patients recovered from a severe disease have shown two dominant inflammatory monocyte clusters featuring S100 family genes: one monocyte cluster of S100A8 & A9 coupled with high HLA-I and another cluster of S100A4 & A6 with high HLA-II genes, a specific non-classical monocyte cluster with distinct IFITM family genes, as well as a unique TGF-ß high Treg Cluster. The outpatients and seronegative controls share most of the monocyte and Treg clusters patterns with high expression of HLA genes. Surprisingly, while presumably short-lived monocytes appear to have sustained alterations over 4 months, the decreased frequencies of long-lived Tregs (high HLA-DRA and S100A6) in the outpatients restore over the tested convalescent time (≥ 4 months). Collectively, our study identifies sustained and dynamically altered monocytes and Treg clusters with distinct molecular signatures after recovery, associated with COVID-19 severity.
Asunto(s)
COVID-19 , Monocitos , Humanos , COVID-19/metabolismo , Linfocitos T Reguladores , Pandemias , SARS-CoV-2RESUMEN
Plants with facultative crassulacean acid metabolism (CAM) maximize performance through utilizing C3 or C4 photosynthesis under ideal conditions while temporally switching to CAM under water stress (drought). While genome-scale analyses of constitutive CAM plants suggest that time of day networks are shifted, or phased to the evening compared to C3, little is known for how the shift from C3 to CAM networks is modulated in drought induced CAM. Here we generate a draft genome for the drought-induced CAM-cycling species Sedum album. Through parallel sampling in well-watered (C3) and drought (CAM) conditions, we uncover a massive rewiring of time of day expression and a CAM and stress-specific network. The core circadian genes are expanded in S. album and under CAM induction, core clock genes either change phase or amplitude. While the core clock cis-elements are conserved in S. album, we uncover a set of novel CAM and stress specific cis-elements consistent with our finding of rewired co-expression networks. We identified shared elements between constitutive CAM and CAM-cycling species and expression patterns unique to CAM-cycling S. album. Together these results demonstrate that drought induced CAM-cycling photosynthesis evolved through the mobilization of a stress-specific, time of day network, and not solely the phasing of existing C3 networks. These results will inform efforts to engineer water use efficiency into crop plants for growth on marginal land.
Asunto(s)
Adaptación Fisiológica/genética , Fotosíntesis/genética , Proteínas de Plantas/genética , Sedum/genética , Carbono/metabolismo , Ciclo del Carbono/genética , Dióxido de Carbono/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas , Genoma de Planta/genética , Proteínas de Plantas/metabolismo , Sedum/metabolismo , Agua/químicaRESUMEN
The adaptive radiation of Bromeliaceae (pineapple family) is one of the most diverse among Neotropical flowering plants. Diversification in this group was facilitated by shifts in several adaptive traits or "key innovations" including the transition from C3 to CAM photosynthesis associated with xeric (heat/drought) adaptation. We used phylogenomic approaches, complemented by differential gene expression (RNA-seq) and targeted metabolite profiling, to address the mechanisms of C3 /CAM evolution in the extremely species-rich bromeliad genus, Tillandsia, and related taxa. Evolutionary analyses of whole-genome sequencing and RNA-seq data suggest that evolution of CAM is associated with coincident changes to different pathways mediating xeric adaptation in this group. At the molecular level, C3 /CAM shifts were accompanied by gene expansion of XAP5 CIRCADIAN TIMEKEEPER homologs, a regulator involved in sugar- and light-dependent regulation of growth and development. Our analyses also support the re-programming of abscisic acid-related gene expression via differential expression of ABF2/ABF3 transcription factor homologs, and adaptive sequence evolution of an ENO2/LOS2 enolase homolog, effectively tying carbohydrate flux to abscisic acid-mediated abiotic stress response. By pinpointing different regulators of overlapping molecular responses, our results suggest plausible mechanistic explanations for the repeated evolution of correlated adaptive traits seen in a textbook example of an adaptive radiation.
Asunto(s)
Bromeliaceae/genética , Metabolismo Ácido de las Crasuláceas/genética , Especiación Genética , Evolución Biológica , Bromeliaceae/metabolismo , Bromeliaceae/fisiología , Genes de Plantas/genética , Filogenia , Análisis de Secuencia de ARN , Secuenciación del Exoma , Secuenciación Completa del GenomaRESUMEN
Pineapple occupies an important phylogenetic position and its reference genome expedites genomic research within the family Bromeliaceae and more widely among monocots. One such research focus is the evolution of crassulacean acid metabolism (CAM) photosynthesis. Acquiring circadian clock cis-regulatory elements in CAM-related genes might be a critical step in the evolution of this form of photosynthesis. Follow-up studies will clarify the processes and evolutionary forces leading to the multiple independent origins of CAM photosynthesis within the family Bromeliaceae and in over 400 genera across 36 families.
Asunto(s)
Ananas/genética , Evolución Molecular , Genoma de Planta/genética , Fotosíntesis/genética , Genómica , FilogeniaRESUMEN
Sex in papaya is controlled by a pair of nascent sex chromosomes. Females are XX, and two slightly different Y chromosomes distinguish males (XY) and hermaphrodites (XY(h)). The hermaphrodite-specific region of the Y(h) chromosome (HSY) and its X chromosome counterpart were sequenced and analyzed previously. We now report the sequence of the entire male-specific region of the Y (MSY). We used a BAC-by-BAC approach to sequence the MSY and resequence the Y regions of 24 wild males and the Y(h) regions of 12 cultivated hermaphrodites. The MSY and HSY regions have highly similar gene content and structure, and only 0.4% sequence divergence. The MSY sequences from wild males include three distinct haplotypes, associated with the populations' geographic locations, but gene flow is detected for other genomic regions. The Y(h) sequence is highly similar to one Y haplotype (MSY3) found only in wild dioecious populations from the north Pacific region of Costa Rica. The low MSY3-Y(h) divergence supports the hypothesis that hermaphrodite papaya is a product of human domestication. We estimate that Y(h) arose only â¼ 4000 yr ago, well after crop plant domestication in Mesoamerica >6200 yr ago but coinciding with the rise of the Maya civilization. The Y(h) chromosome has lower nucleotide diversity than the Y, or the genome regions that are not fully sex-linked, consistent with a domestication bottleneck. The identification of the ancestral MSY3 haplotype will expedite investigation of the mutation leading to the domestication of the hermaphrodite Y(h) chromosome. In turn, this mutation should identify the gene that was affected by the carpel-suppressing mutation that was involved in the evolution of males.
Asunto(s)
Carica/genética , Cromosomas de las Plantas/genética , Cromosomas Sexuales/genética , Procesos de Determinación del Sexo/genética , Secuencia de Bases , Flujo Génico/genética , Haplotipos/genética , Organismos Hermafroditas/genética , Datos de Secuencia Molecular , Fitomejoramiento , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , SexoRESUMEN
BACKGROUND: Sugarcane is an emerging dual-purpose biofuel crop for energy and sugar production, owing to its rapid growth rate, high sucrose storage in the stems, and high lignocellulosic yield. It has the highest biomass production reaching 1.9 billion tonnes in 2014 worldwide. RESULTS: To improve sugarcane biomass accumulation, we developed an interspecific cross between Saccharum officinarum 'LA Purple' and Saccharum robustum 'MOL5829'. Selected F1 individuals were self-pollinated to generate a transgressive F2 population with a wide range of biomass yield. Leaf and stem internodes of fourteen high biomass and eight low biomass F2 extreme segregants were used for RNA-seq to decipher the molecular mechanism of rapid plant growth and dry weight accumulation. Gene Ontology terms involved in cell wall metabolism and carbohydrate catabolism were enriched among 3274 differentially expressed genes between high and low biomass groups. Up-regulation of cellulose metabolism, pectin degradation and lignin biosynthesis genes were observed in the high biomass group, in conjunction with higher transcript levels of callose metabolic genes and the cell wall loosening enzyme expansin. Furthermore, UDP-glucose biosynthesis and sucrose conversion genes were differentially expressed between the two groups. A positive correlation between stem glucose, but not sucrose, levels and dry weight was detected. CONCLUSIONS: We thus postulated that the high biomass sugarcane plants rapidly convert sucrose to UDP-glucose, which is the building block of cell wall polymers and callose, in order to maintain the rapid plant growth. The gene interaction of cell wall metabolism, hexose allocation and cell division contributes to biomass yield.
Asunto(s)
Biomasa , Pared Celular/metabolismo , Hexosas/metabolismo , Hibridación Genética , Saccharum/citología , Saccharum/metabolismo , Saccharum/genética , Saccharum/crecimiento & desarrollo , Factores de Transcripción/metabolismoRESUMEN
Resurrection plants desiccate during periods of prolonged drought stress, then resume normal cellular metabolism upon water availability. Desiccation tolerance has multiple origins in flowering plants, and it likely evolved through rewiring seed desiccation pathways. Oropetium thomaeum is an emerging model for extreme drought tolerance, and its genome, which is the smallest among surveyed grasses, was recently sequenced. Combining RNA-seq, targeted metabolite analysis and comparative genomics, we show evidence for co-option of seed-specific pathways during vegetative desiccation. Desiccation-related gene co-expression clusters are enriched in functions related to seed development including several seed-specific transcription factors. Across the metabolic network, pathways involved in programmed cell death inhibition, ABA signalling and others are activated during dehydration. Oleosins and oil bodies that typically function in seed storage are highly abundant in desiccated leaves and may function for membrane stability and storage. Orthologs to seed-specific LEA proteins from rice and maize have neofunctionalized in Oropetium with high expression during desiccation. Accumulation of sucrose, raffinose and stachyose in drying leaves mirrors sugar accumulation patterns in maturing seeds. Together, these results connect vegetative desiccation with existing seed desiccation and drought responsive pathways and provide some key candidate genes for engineering improved drought tolerance in crop plants.
Asunto(s)
Craterostigma/fisiología , Desecación , Semillas/fisiología , Adaptación Fisiológica/genética , Cloroplastos/metabolismo , Cloroplastos/ultraestructura , Craterostigma/genética , Craterostigma/ultraestructura , Deshidratación , Duplicación de Gen , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Gotas Lipídicas/metabolismo , Gotas Lipídicas/ultraestructura , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Semillas/genética , Estrés Fisiológico , Azúcares/metabolismo , Factores de Transcripción/metabolismo , AguaRESUMEN
Zoysiagrass (Zoysia spp.), belonging to the genus Zoysia in the subfamily Chloridoideae, is widely used in domestic lawns, sports fields and as forage. We constructed high-density genetic maps of Zoysia japonica using a restriction site-associated DNA sequencing (RAD-Seq) approach and an F1 mapping population derived from a cross between 'Carrizo' and 'El Toro'. Two linkage maps were constructed, one for each of the parents. A map consisting of 2408 RAD markers distributed on 21 linkage groups was constructed for 'Carrizo'. Another map with 1230 RAD markers mapped on 20 linkage groups was constructed for 'El Toro'. The average distance between adjacent markers of the two maps was at 0.56 and 1.4 cM, respectively. Comparative genomics analysis was carried out among zoysiagrass, rice and sorghum genomes and a highly conserved collinearity in the gene order was observed among the three genomes. Chromosome collinearity was disrupted at centromeric regions for each chromosome pair between zoysiagrass and sorghum genomes. However, no obvious synteny gaps were observed across the centromeric regions between zoysiagrass and rice genomes. Two homologous chromosomes for each of the 10 sorghum chromosomes were found in the zoysiagrass genome, indicating an allotetraploid origin for zoysiagrass. The reduction of the basic chromosome number from 12 to 10 in chloridoids and panicoids took place via independent single-step nested chromosome fusion events after the two subfamilies diverged from a common ancestor. The genetic maps will assist in genome sequence assembly, targeted gene isolation and comparative genomic analyses among grasses.
Asunto(s)
Evolución Biológica , Etiquetas de Secuencia Expresada , Genoma de Planta , Poaceae/genética , Mapeo Cromosómico , Cromosomas de las Plantas , Ligamiento Genético , Oryza/genética , Polimorfismo de Nucleótido Simple , Setaria (Planta)/genética , Sorghum/genética , SinteníaRESUMEN
Sex determination in papaya is controlled by a recently evolved XY chromosome pair, with two slightly different Y chromosomes controlling the development of males (Y) and hermaphrodites (Y(h)). To study the events of early sex chromosome evolution, we sequenced the hermaphrodite-specific region of the Y(h) chromosome (HSY) and its X counterpart, yielding an 8.1-megabase (Mb) HSY pseudomolecule, and a 3.5-Mb sequence for the corresponding X region. The HSY is larger than the X region, mostly due to retrotransposon insertions. The papaya HSY differs from the X region by two large-scale inversions, the first of which likely caused the recombination suppression between the X and Y(h) chromosomes, followed by numerous additional chromosomal rearrangements. Altogether, including the X and/or HSY regions, 124 transcription units were annotated, including 50 functional pairs present in both the X and HSY. Ten HSY genes had functional homologs elsewhere in the papaya autosomal regions, suggesting movement of genes onto the HSY, whereas the X region had none. Sequence divergence between 70 transcripts shared by the X and HSY revealed two evolutionary strata in the X chromosome, corresponding to the two inversions on the HSY, the older of which evolved about 7.0 million years ago. Gene content differences between the HSY and X are greatest in the older stratum, whereas the gene content and order of the collinear regions are identical. Our findings support theoretical models of early sex chromosome evolution.
Asunto(s)
Carica/genética , Cromosomas Sexuales , Duplicación Cromosómica , Inversión Cromosómica , Mapeo Cromosómico , Cromosomas Artificiales Bacterianos , Cromosomas de las Plantas , Evolución Molecular , Modelos Genéticos , Datos de Secuencia Molecular , Secuencias Repetitivas de Ácidos Nucleicos , Retroelementos , Análisis de Secuencia de ADNRESUMEN
Papaya, a fruit crop cultivated in tropical and subtropical regions, is known for its nutritional benefits and medicinal applications. Here we report a 3x draft genome sequence of 'SunUp' papaya, the first commercial virus-resistant transgenic fruit tree to be sequenced. The papaya genome is three times the size of the Arabidopsis genome, but contains fewer genes, including significantly fewer disease-resistance gene analogues. Comparison of the five sequenced genomes suggests a minimal angiosperm gene set of 13,311. A lack of recent genome duplication, atypical of other angiosperm genomes sequenced so far, may account for the smaller papaya gene number in most functional groups. Nonetheless, striking amplifications in gene number within particular functional groups suggest roles in the evolution of tree-like habit, deposition and remobilization of starch reserves, attraction of seed dispersal agents, and adaptation to tropical daylengths. Transgenesis at three locations is closely associated with chloroplast insertions into the nuclear genome, and with topoisomerase I recognition sites. Papaya offers numerous advantages as a system for fruit-tree functional genomics, and this draft genome sequence provides the foundation for revealing the basis of Carica's distinguishing morpho-physiological, medicinal and nutritional properties.
Asunto(s)
Carica/genética , Genoma de Planta/genética , Arabidopsis/genética , Mapeo Contig , Bases de Datos Genéticas , Genes de Plantas/genética , Datos de Secuencia Molecular , Plantas Modificadas Genéticamente/genética , Alineación de Secuencia , Análisis de Secuencia de ADN , Factores de Transcripción/genética , Clima TropicalRESUMEN
While immunotherapy has revolutionized cancer treatment, its safety has been hampered by immunotherapy-related adverse events. Unexpectedly, we show that Mediator complex subunit 1 (MED1) is required for T regulatory (Treg) cell function specifically in the tumor microenvironment. Treg cell-specific MED1 deletion does not predispose mice to autoimmunity or excessive inflammation. In contrast, MED1 is required for Treg cell promotion of tumor growth because MED1 is required for the terminal differentiation of effector Treg cells in the tumor. Suppression of these terminally differentiated Treg cells is sufficient for eliciting antitumor immunity. Both human and murine Treg cells experience divergent paths of differentiation in tumors and matched tissues with non-malignant inflammation. Collectively, we identify a pathway promoting the differentiation of a Treg cell effector subset specific to tumors and demonstrate that suppression of a subset of Treg cells is sufficient for promoting antitumor immunity in the absence of autoimmune consequences.
Asunto(s)
Neoplasias , Linfocitos T Reguladores , Humanos , Animales , Ratones , Subunidad 1 del Complejo Mediador/metabolismo , Factores de Transcripción Forkhead , Neoplasias/patología , Inflamación/metabolismo , Microambiente TumoralRESUMEN
Coffea arabica, an allotetraploid hybrid of Coffea eugenioides and Coffea canephora, is the source of approximately 60% of coffee products worldwide, and its cultivated accessions have undergone several population bottlenecks. We present chromosome-level assemblies of a di-haploid C. arabica accession and modern representatives of its diploid progenitors, C. eugenioides and C. canephora. The three species exhibit largely conserved genome structures between diploid parents and descendant subgenomes, with no obvious global subgenome dominance. We find evidence for a founding polyploidy event 350,000-610,000 years ago, followed by several pre-domestication bottlenecks, resulting in narrow genetic variation. A split between wild accessions and cultivar progenitors occurred ~30.5 thousand years ago, followed by a period of migration between the two populations. Analysis of modern varieties, including lines historically introgressed with C. canephora, highlights their breeding histories and loci that may contribute to pathogen resistance, laying the groundwork for future genomics-based breeding of C. arabica.
Asunto(s)
Coffea , Coffea/genética , Café , Genoma de Planta/genética , Metagenómica , FitomejoramientoRESUMEN
Papaya is a model system for the study of sex chromosome evolution in plants. However, the cytological structures of the papaya chromosomes remain largely unknown and chromosomal features have not been linked with any genetic or genomic data. We constructed a cytogenetic map of the papaya sex chromosome (chromosome 1) by hybridizing 16 microsatellite markers and 2 cytological feature-associated markers on pachytene chromosomes using fluorescence in situ hybridization (FISH). Except for three markers, the order of the markers was concordant to that of marker loci along the linkage map. This discrepancy was likely caused by skewed segregation in the highly heterochromatic or centromeric regions. The papaya sex chromosome is largely euchromatic, its heterochromatin spans about 15 % of the Y chromosome and is mostly restricted to the centromeric and pericentromeric regions. Analysis of the recombination frequency along the papaya sex chromosome revealed a complete suppression of recombination in the centromere and pericentromere region and 60 % higher recombination rate in the long arm than in the short arm. The uneven distribution of recombination events might be caused by differences in sequence composition. Sequence analysis of 18 scaffolds in total length of 15 Mb revealed higher gene density towards the telomeres and lower gene density towards the centromere, and a relatively higher gene density in the long arm than in the short arm. In an opposite trend, the centromeric and pericentromeric region contained the highest repetitive sequences and the long arm showed the lowest repetitive sequences. This cytogenetic map provides essential information for evolutionary study of sex chromosomes in Caricaceae and will facilitate the analysis of papaya sex chromosomes.
Asunto(s)
Carica/genética , Recombinación Genética/genética , Cromosomas Sexuales/genética , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Secuencia de Bases , Análisis Citogenético , Marcadores Genéticos/genética , Hibridación Fluorescente in Situ , Regiones de Fijación a la Matriz/genética , Repeticiones de Microsatélite/genética , Datos de Secuencia Molecular , Mapeo Físico de Cromosoma , Análisis de Secuencia de ADNRESUMEN
Pineapple (Ananas comosus var. comosus) and ornamental bromeliads are commercially induced to flower by treatment with ethylene or its analogs. The apex is transformed from a vegetative to a floral meristem and shows morphological changes in 8 to 10 days, with flowers developing 8 to 10 weeks later. During eight sampling stages ranging from 6 h to 8 days after treatment, 7961 genes were found to exhibit differential expression (DE) after the application of ethylene. In the first 3 days after treatment, there was little change in ethylene synthesis or in the early stages of the ethylene response. Subsequently, three ethylene response transcription factors (ERTF) were up-regulated and the potential gene targets were predicted to be the positive flowering regulator CONSTANS-like 3 (CO), a WUSCHEL gene, two APETALA1/FRUITFULL (AP1/FUL) genes, an epidermal patterning gene, and a jasmonic acid synthesis gene. We confirm that pineapple has lost the flowering repressor FLOWERING LOCUS C. At the initial stages, the SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) was not significantly involved in this transition. Another WUSCHEL gene and a PHD homeobox transcription factor, though not apparent direct targets of ERTF, were up-regulated within a day of treatment, their predicted targets being the up-regulated CO, auxin response factors, SQUAMOSA, and histone H3 genes with suppression of abscisic acid response genes. The FLOWERING LOCUS T (FT), TERMINAL FLOWER (TFL), AGAMOUS-like APETELAR (AP2), and SEPETALA (SEP) increased rapidly within 2 to 3 days after ethylene treatment. Two FT genes were up-regulated at the apex and not at the leaf bases after treatment, suggesting that transport did not occur. These results indicated that the ethylene response in pineapple and possibly most bromeliads act directly to promote the vegetative to flower transition via APETALA1/FRUITFULL (AP1/FUL) and its interaction with SPL, FT, TFL, SEP, and AP2. A model based on AP2/ERTF DE and predicted DE target genes was developed to give focus to future research. The identified candidate genes are potential targets for genetic manipulation to determine their molecular role in flower transition.
RESUMEN
Femoral atherosclerotic plaques are less inflammatory than carotid plaques histologically, but limited cell-level data exist regarding comparative immune landscapes and polarization at these sites. We investigated intraplaque leukocyte phenotypes and transcriptional polarization in 49 patients undergoing femoral (n = 23) or carotid (n = 26) endarterectomy using single-cell RNA-Seq (scRNA-Seq; n = 13), flow cytometry (n = 24), and IHC (n = 12). Comparative scRNA-Seq of CD45+-selected leukocytes from femoral (n = 9; 35,265 cells) and carotid (n = 4; 30,655 cells) plaque revealed distinct transcriptional profiles. Inflammatory foam cell-like macrophages and monocytes comprised higher proportions of myeloid cells in carotid plaques, whereas noninflammatory foam cell-like macrophages and LYVE1-overexpressing macrophages comprised higher proportions of myeloid cells in femoral plaque (P < 0.001 for all). A significant comparative excess of CCR2+ macrophages in carotid versus plaque was observed by flow cytometry in a separate validation cohort. B cells were more prevalent and exhibited a comparatively antiinflammatory profile in femoral plaque, whereas cytotoxic CD8+ T cells were more prevalent in carotid plaque. In conclusion, human femoral plaques exhibit distinct macrophage phenotypic and transcriptional profiles as well as diminished CD8+ T cell populations compared with human carotid plaques.
Asunto(s)
Placa Aterosclerótica , Humanos , Placa Aterosclerótica/patología , Arterias Carótidas/patología , Leucocitos/patología , Monocitos/patología , MacrófagosRESUMEN
SARS-CoV-2 is spread through exhaled breath of infected individuals. A fundamental question in understanding transmission of SARS-CoV-2 is how much virus an individual is exhaling into the environment while they breathe, over the course of their infection. Research on viral load dynamics during COVID-19 infection has focused on internal swab specimens, which provide a measure of viral loads inside the respiratory tract, but not on breath. Therefore, the dynamics of viral shedding on exhaled breath over the course of infection are poorly understood. Here, we collected exhaled breath specimens from COVID-19 patients and used RTq-PCR to show that numbers of exhaled SARS-CoV-2 RNA copies during COVID-19 infection do not decrease significantly until day 8 from symptom-onset. COVID-19-positive participants exhaled an average of 80 SARS-CoV-2 viral RNA copies per minute during the first 8 days of infection, with significant variability both between and within individuals, including spikes over 800 copies a minute in some patients. After day 8, there was a steep drop to levels nearing the limit of detection, persisting for up to 20 days. We further found that levels of exhaled viral RNA increased with self-rated symptom-severity, though individual variation was high. Levels of exhaled viral RNA did not differ across age, sex, time of day, vaccination status or viral variant. Our data provide a fine-grained, direct measure of the number of SARS-CoV-2 viral copies exhaled per minute during natural breathing-including 312 breath specimens collected multiple times daily over the course of infection-in order to fill an important gap in our understanding of the time course of exhaled viral loads in COVID-19.
RESUMEN
Pistachio is a nut crop domesticated in the Fertile Crescent and a dioecious species with ZW sex chromosomes. We sequenced the genomes of Pistacia vera cultivar (cv.) Siirt, the female parent, and P. vera cv. Bagyolu, the male parent. Two chromosome-level reference genomes of pistachio were generated, and Z and W chromosomes were assembled. The ZW chromosomes originated from an autosome following the first inversion, which occurred approximately 8.18 Mya. Three inversion events in the W chromosome led to the formation of a 12.7-Mb (22.8% of the W chromosome) non-recombining region. These W-specific sequences contain several genes of interest that may have played a pivotal role in sex determination and contributed to the initiation and evolution of a ZW sex chromosome system in pistachio. The W-specific genes, including defA, defA-like, DYT1, two PTEN1, and two tandem duplications of six VPS13A paralogs, are strong candidates for sex determination or differentiation. Demographic history analysis of resequenced genomes suggest that cultivated pistachio underwent severe domestication bottlenecks approximately 7640 years ago, dating the domestication event close to the archeological record of pistachio domestication in Iran. We identified 390, 211, and 290 potential selective sweeps in 3 cultivar subgroups that underlie agronomic traits such as nut development and quality, grafting success, flowering time shift, and drought tolerance. These findings have improved our understanding of the genomic basis of sex determination/differentiation and horticulturally important traits and will accelerate the improvement of pistachio cultivars and rootstocks.
Asunto(s)
Pistacia , Pistacia/genética , Árboles/genética , Nueces , Domesticación , Cromosomas Sexuales/genéticaRESUMEN
Desiccation tolerance has evolved recurrently in grasses using two unique strategies of either protecting or dismantling the photosynthetic apparatus to minimize photooxidative damage under life without water (anhydrobiosis). Here, we surveyed chromatin architecture and gene expression during desiccation in two closely related grasses with distinguishing desiccation tolerance strategies to identify regulatory dynamics underlying these unique adaptations. In both grasses, we observed a strong association between nearby chromatin accessibility and gene expression in desiccated tissues compared to well-watered, reflecting an unusual chromatin stability under anhydrobiosis. Integration of chromatin accessibility (ATACseq) and expression data (RNAseq) revealed a core desiccation response across these two grasses. This includes many genes with binding sites for the core seed development transcription factor ABI5, supporting the long-standing hypothesis that vegetative desiccation tolerance evolved from rewiring seed pathways. Oropetium thomaeum has a unique set of desiccation induced genes and regulatory elements associated with photoprotection, pigment biosynthesis, and response to high light, reflecting its adaptation of protecting the photosynthetic apparatus under desiccation (homoiochlorophyly). By contrast, Eragrostis nindensis has unique accessible and expressed genes related to chlorophyll catabolism, scavenging of amino acids, and hypoxia, highlighting its poikilochlorophyllous adaptations of dismantling the photosynthetic apparatus and degrading chlorophyll under desiccation. Together, our results highlight the complex regulatory and expression dynamics underlying desiccation tolerance in grasses.