Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Nature ; 586(7829): 417-423, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32999463

RESUMEN

Microglia, the brain's resident macrophages, help to regulate brain function by removing dying neurons, pruning non-functional synapses, and producing ligands that support neuronal survival1. Here we show that microglia are also critical modulators of neuronal activity and associated behavioural responses in mice. Microglia respond to neuronal activation by suppressing neuronal activity, and ablation of microglia amplifies and synchronizes the activity of neurons, leading to seizures. Suppression of neuronal activation by microglia occurs in a highly region-specific fashion and depends on the ability of microglia to sense and catabolize extracellular ATP, which is released upon neuronal activation by neurons and astrocytes. ATP triggers the recruitment of microglial protrusions and is converted by the microglial ATP/ADP hydrolysing ectoenzyme CD39 into AMP; AMP is then converted into adenosine by CD73, which is expressed on microglia as well as other brain cells. Microglial sensing of ATP, the ensuing microglia-dependent production of adenosine, and the adenosine-mediated suppression of neuronal responses via the adenosine receptor A1R are essential for the regulation of neuronal activity and animal behaviour. Our findings suggest that this microglia-driven negative feedback mechanism operates similarly to inhibitory neurons and is essential for protecting the brain from excessive activation in health and disease.


Asunto(s)
Retroalimentación Fisiológica , Microglía/fisiología , Inhibición Neural , Neuronas/fisiología , 5'-Nucleotidasa/metabolismo , Potenciales de Acción , Adenosina/metabolismo , Adenosina Monofosfato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Antígenos CD/metabolismo , Apirasa/metabolismo , Calcio/metabolismo , Cuerpo Estriado/citología , Cuerpo Estriado/fisiología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/citología , Inhibición Neural/genética , Receptor de Adenosina A1/metabolismo , Receptor Muscarínico M3/genética , Receptor Muscarínico M3/metabolismo , Factores de Tiempo
2.
Dev Growth Differ ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38894655

RESUMEN

Microglia colonize the brain starting on embryonic day (E) 9.5 in mice, and their population increases with development. We have previously demonstrated that some microglia are derived from intraventricular macrophages, which frequently infiltrate the pallium at E12.5. To address how the infiltration of intraventricular macrophages is spatiotemporally regulated, histological analyses detecting how these cells associate with the surrounding cells at the site of infiltration into the pallial surface are essential. Using two-photon microscopy-based in vivo imaging, we demonstrated that most intraventricular macrophages adhere to the ventricular surface. This is a useful tool for imaging intraventricular macrophages maintaining their original position, but this method cannot be used for observing deeper brain regions. Meanwhile, we found that conventional cryosection-based and naked pallial slice-based observation resulted in unexpected detachment from the ventricular surface of intraventricular macrophages and their mislocation, suggesting that previous histological analyses might have failed to determine their physiological number and location in the ventricular space. To address this, we sought to establish a methodological preparation that enables us to delineate the structure and cellular interactions when intraventricular macrophages infiltrate the pallium. Here, we report that brain slices pretreated with agarose-embedding maintained adequate density and proper positioning of intraventricular macrophages on the ventricular surface. This method also enabled us to perform the immunostaining. We believe that this is helpful for conducting histological analyses to elucidate the mechanisms underlying intraventricular macrophage infiltration into the pallium and their cellular properties, leading to further understanding of the process of microglial colonization into the developing brain.

3.
Glia ; 71(11): 2591-2608, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37475643

RESUMEN

Brain function relies on both rapid electrical communication in neural circuitry and appropriate patterns or synchrony of neural activity. Rapid communication between neurons is facilitated by wrapping nerve axons with insulation by a myelin sheath composed largely of different lipids. Recent evidence has indicated that the extent of myelination of nerve axons can adapt based on neural activity levels and this adaptive myelination is associated with improved learning of motor tasks, suggesting such plasticity may enhance effective learning. In this study, we examined whether another aspect of myelin plasticity-changes in myelin lipid synthesis and composition-may also be associated with motor learning. We combined a motor learning task in mice with in vivo two-photon imaging of neural activity in the primary motor cortex (M1) to distinguish early and late stages of learning and then probed levels of some key myelin lipids using mass spectrometry analysis. Sphingomyelin levels were elevated in the early stage of motor learning while galactosylceramide levels were elevated in the middle and late stages of motor learning, and these changes were correlated across individual mice with both learning performance and neural activity changes. Targeted inhibition of oligodendrocyte-specific galactosyltransferase expression, the enzyme that synthesizes myelin galactosylceramide, impaired motor learning. Our results suggest regulation of myelin lipid composition could be a novel facet of myelin adaptations associated with learning.


Asunto(s)
Galactosilceramidas , Vaina de Mielina , Ratones , Animales , Vaina de Mielina/metabolismo , Galactosilceramidas/metabolismo , Axones/metabolismo , Neuronas/metabolismo , Oligodendroglía/fisiología
4.
Epilepsia ; 64(12): 3389-3403, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37779224

RESUMEN

OBJECTIVE: A pathological excitatory action of the major inhibitory neurotransmitter γ-aminobutyric acid (GABA) has been observed in epilepsy. Blocking the Cl- importer NKCC1 with bumetanide is expected to reduce the neuronal intracellular Cl- concentration ([Cl- ]i ) and thereby attenuate the excitatory GABA response. Accordingly, several clinical trials of bumetanide for epilepsy were conducted. Although NKCC1 is expressed in both neurons and glial cells, an involvement of glial NKCC1 in seizures has not yet been reported. Astrocytes maintain high [Cl- ]i with NKCC1, and this gradient promotes Cl- efflux via the astrocytic GABAA receptor (GABAA R). This Cl- efflux buffers the synaptic cleft Cl- concentration to maintain the postsynaptic Cl- gradient during intense firing of GABAergic neurons, thereby sustaining its inhibitory action during seizure. In this study, we investigated the function of astrocytic NKCC1 in modulating the postsynaptic action of GABA in acute seizure models. METHODS: We used the astrocyte-specific conditional NKCC1 knockout (AstroNKCC1KO) mice. The seizurelike events (SLEs) in CA1 pyramidal neurons were triggered by tetanic stimulation of stratum radiatum in acute hippocampus slices. The SLE underlying GABAA R-mediated depolarization was evaluated by applying the GABAA R antagonist bicuculline. The pilocarpine-induced seizure in vivo was monitored in adult mice by the Racine scale. The SLE duration and tetanus stimulation intensity threshold and seizure behavior in AstroNKCC1KO mice and wild-type (WT) mice were compared. RESULTS: The AstroNKCC1KO mice were prone to seizures with lower threshold and longer duration of SLEs and larger GABAA R-mediated depolarization underlying the SLEs, accompanied by higher Racine-scored seizures. Bumetanide reduced these indicators of seizure in AstroNKCC1KO mice (which still express neuronal NKCC1), but not in the WT, both in vitro and in vivo. SIGNIFICANCE: Astrocytic NKCC1 inhibits GABA-mediated excitatory action during seizures, whereas neuronal NKCC1 has the converse effect, suggesting opposing actions of bumetanide on these cells.


Asunto(s)
Bumetanida , Epilepsia , Miembro 2 de la Familia de Transportadores de Soluto 12 , Animales , Ratones , Astrocitos , Bumetanida/farmacología , Bumetanida/uso terapéutico , Epilepsia/tratamiento farmacológico , Ácido gamma-Aminobutírico/metabolismo , Neuronas , Receptores de GABA-A/fisiología , Convulsiones , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico/farmacología , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico/uso terapéutico , Miembro 2 de la Familia de Transportadores de Soluto 12/genética , Sinapsis , Cloruros/metabolismo
5.
Proc Natl Acad Sci U S A ; 115(46): 11832-11837, 2018 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-30373833

RESUMEN

The speed of impulse transmission is critical for optimal neural circuit function, but it is unclear how the appropriate conduction velocity is established in individual axons. The velocity of impulse transmission is influenced by the thickness of the myelin sheath and the morphology of electrogenic nodes of Ranvier along axons. Here we show that myelin thickness and nodal gap length are reversibly altered by astrocytes, glial cells that contact nodes of Ranvier. Thrombin-dependent proteolysis of a cell adhesion molecule that attaches myelin to the axon (neurofascin 155) is inhibited by vesicular release of thrombin protease inhibitors from perinodal astrocytes. Transgenic mice expressing a dominant-negative fragment of VAMP2 in astrocytes, to reduce exocytosis by 50%, exhibited detachment of adjacent paranodal loops of myelin from the axon, increased nodal gap length, and thinning of the myelin sheath in the optic nerve. These morphological changes alter the passive cable properties of axons to reduce conduction velocity and spike-time arrival in the CNS in parallel with a decrease in visual acuity. All effects were reversed by the thrombin inhibitor Fondaparinux. Similar results were obtained by viral transfection of tetanus toxin into astrocytes of rat corpus callosum. Previously, it was unknown how the myelin sheath could be thinned and the functions of perinodal astrocytes were not well understood. These findings describe a form of nervous system plasticity in which myelin structure and conduction velocity are adjusted by astrocytes. The thrombin-dependent cleavage of neurofascin 155 may also have relevance to myelin disruption and repair.


Asunto(s)
Astrocitos/fisiología , Vaina de Mielina/fisiología , Animales , Axones/metabolismo , Humanos , Ratones , Ratones Transgénicos , Vaina de Mielina/metabolismo , Fibras Nerviosas Mielínicas/fisiología , Conducción Nerviosa/fisiología , Neuroglía/metabolismo , Nervio Óptico/metabolismo , Nódulos de Ranvier/metabolismo , Relación Estructura-Actividad , Trombina , Proteína 2 de Membrana Asociada a Vesículas
6.
Glia ; 68(1): 193-210, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31465122

RESUMEN

Myelination increases the conduction velocity in long-range axons and is prerequisite for many brain functions. Impaired myelin regulation or impairment of myelin itself is frequently associated with deficits in learning and cognition in neurological and psychiatric disorders. However, it has not been revealed what perturbation of neural activity induced by myelin impairment causes learning deficits. Here, we measured neural activity in the motor cortex during motor learning in transgenic mice with a subtle impairment of their myelin. This deficit in myelin impaired motor learning, and was accompanied by a decrease in the amplitude of movement-related activity and an increase in the frequency of spontaneous activity. Thalamocortical axons showed variability in axonal conduction with a large spread in the timing of postsynaptic cortical responses. Repetitive pairing of forelimb movements with optogenetic stimulation of thalamocortical axon terminals restored motor learning. Thus, myelin regulation helps to maintain the synchrony of cortical spike-time arrivals through long-range axons, facilitating the propagation of the information required for learning. Our results revealed the pathological neuronal circuit activity with impaired myelin and suggest the possibility that pairing of noninvasive brain stimulation with relevant behaviors may ameliorate cognitive and behavioral abnormalities in diseases with impaired myelination.


Asunto(s)
Potenciales de Acción/fisiología , Aprendizaje/fisiología , Corteza Motora/metabolismo , Fibras Nerviosas Mielínicas/metabolismo , Neuronas/metabolismo , Desempeño Psicomotor/fisiología , Animales , Masculino , Ratones , Ratones Transgénicos , Corteza Motora/química , Vaina de Mielina/metabolismo , Fibras Nerviosas Mielínicas/química , Neuronas/química , Optogenética/métodos
7.
Neuropathology ; 39(3): 173-180, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31131941

RESUMEN

Microglia, the sole immune cells in the brain, are the key player for synaptic regulation required for our brain function in both developing and adult brain. They have highly motile processes to detect synaptic functions. Recent accumulated studies have unveiled the mechanism underlying synapse detection and pruning / formation by microglia. In this review, we summarize the current knowledge of various microglial machinery recruited in synaptic modulation in the different life stages and contexts.


Asunto(s)
Encéfalo/fisiología , Microglía/fisiología , Red Nerviosa/fisiología , Plasticidad Neuronal/fisiología , Animales , Encéfalo/citología , Humanos , Red Nerviosa/citología , Sinapsis/fisiología
8.
Adv Exp Med Biol ; 1190: 43-51, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31760637

RESUMEN

Oligodendrocyte form myelin around the axons to regulate the conduction velocity. Myelinated axons are composed of white matter to act as cables to connect distinct brain regions. Recent human MRI studies showed that the signal from white matter change in the people with special skills such as taxi driver, piano player, and juggling. The change of the white matter suggested that (1) The plasticity of myelination depends on neuronal activity (activity-dependent myelination) and (2) White matter plasticity is essential for brain functions. In this session, we discussed that how the un-electrical components, oligodendrocytes, and its precursor cells receive the signal from electrically active neurons and differentiate, proliferate, and myelinate the axons to modulate the activity of neuronal circuits, ultimately affect on their behaviors. In this review, we highlight the physiological functions of oligodendrocyte and their neuronal activity-dependent functions and thus show new insight for their contribution to brain functions.


Asunto(s)
Vaina de Mielina/fisiología , Oligodendroglía/fisiología , Sustancia Blanca/fisiología , Axones/fisiología , Humanos , Neuronas/fisiología
9.
Glia ; 66(11): 2366-2384, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30375063

RESUMEN

Excitotoxicity is well known in the neuronal death in the brain and is also linked to neuronal damages in the retina. Recent accumulating evidence show that microglia greatly affect excitotoxicity in the brain, but their roles in retina have received only limited attention. Here, we report that retinal excitotoxicity is mediated by microglia. To this end, we employed three discrete methods, that is, pharmacological inhibition of microglia by minocycline, pharmacological ablation by an antagonist for colony stimulating factor 1 receptor (PLX5622), and genetic ablation of microglia using Iba1-tTA::DTAtetO/tetO mice. Intravitreal injection of NMDA increased the number of apoptotic retinal ganglion cells (RGCs) followed by reduction in the number of RGCs. Although microglia did not respond to NMDA directly, they became reactive earlier than RGC damages. Inhibition or ablation of microglia protected RGCs against NMDA. We found up-regulation of proinflammatory cytokine genes including Il1b, Il6 and Tnfa, among which Tnfa was selectively blocked by minocycline. PLX5622 also suppressed Tnfa expression. Tumor necrosis factor α (TNFα) signals were restricted in microglia at very early followed by spreading into other cell types. TNFα up-regulation in microglia and other cells were significantly attenuated by minocycline and PLX5622, suggesting a central role of microglia for TNFα induction. Both inhibition of TNFα and knockdown of TNF receptor type 1 by siRNA protected RGCs against NMDA. Taken together, our data demonstrate that a phenotypic change of microglia into a neurotoxic one is a critical event for the NMDA-induced degeneration of RGCs, suggesting an importance of non-cell-autonomous mechanism in the retinal neuronal excitotoxicity.


Asunto(s)
Muerte Celular/fisiología , Citocinas/metabolismo , Microglía/fisiología , Células Ganglionares de la Retina/fisiología , Aminopiridinas/farmacología , Animales , Animales Recién Nacidos , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Muerte Celular/efectos de los fármacos , Células Cultivadas , Citocinas/genética , Agonistas de Aminoácidos Excitadores/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Microglía/efectos de los fármacos , Microglía/ultraestructura , N-Metilaspartato/farmacología , Degeneración Nerviosa/inducido químicamente , Traumatismos del Nervio Óptico/inducido químicamente , Compuestos Orgánicos/farmacología , Pirroles/farmacología , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/ultraestructura , Transducción de Señal/efectos de los fármacos , Factor de Transcripción Brn-3A/genética , Factor de Transcripción Brn-3A/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
10.
Opt Lett ; 43(21): 5447-5450, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30383032

RESUMEN

A new type of functional optical microscope system called three-dimensional (3D) stimulation and imaging-based functional optical microscopy (SIFOM) is proposed, to the best of our knowledge. SIFOM can precisely stimulate user-defined targeted biological cells and can simultaneously record the volumetric fluorescence distribution in a single acquisition. Precise and simultaneous stimulation of fluorescent-labeled biological cells is achieved by multiple 3D spots generated by digital holograms displayed on a phase-mode spatial light modulator. Single-shot 3D acquisition of the fluorescence distribution is accomplished by common-path off-axis incoherent digital holographic microscopy in which a diffraction grating with a focusing lens is displayed on another phase-mode spatial light modulator. The effectiveness of the proposed functional microscope system was verified in experiments using fluorescent microbeads and human lung cancer cells located at various defocused positions. The system can be used for manipulating the states of cells in optogenetics.


Asunto(s)
Imagenología Tridimensional/métodos , Microscopía Fluorescente/métodos , Diseño de Equipo , Humanos , Imagenología Tridimensional/instrumentación , Neoplasias Pulmonares/patología , Microscopía Fluorescente/instrumentación
11.
Clin Calcium ; 25(6): 859-70, 2015 Jun.
Artículo en Japonés | MEDLINE | ID: mdl-26017863

RESUMEN

Glial cells originate the Greek word'glue'had traditionally been only thought as supporting cells for neurons. Because glial cells are electrically non-excitable, neuroscience researchers have focused on elucidation of excitable cell properties, neuron. Recent advanced optical methods lead us to observe glial structure, motility and their function in normal physiological conditions. These approaches let us to know that they are not just the supporting cells for neuron but could receive signal from neurons through receptors for neurotransmitters and to regulate neuronal functions, thus modulating behavior phenotype. Such studies also suggest that glial cells are highly dynamic and actively maintain brain homeostasis. Here, we review physiological function of glial cells through a new perspective clarified by innovations of imaging technology including two-photon microscope.


Asunto(s)
Neuroimagen Funcional/métodos , Neuroimagen Funcional/tendencias , Microscopía de Fluorescencia por Excitación Multifotónica , Imagen Molecular/métodos , Imagen Molecular/tendencias , Neuroglía/fisiología , Neuroglía/ultraestructura , Neuronas/fisiología , Neuronas/ultraestructura , Animales , Astrocitos/citología , Astrocitos/fisiología , Astrocitos/ultraestructura , Barrera Hematoencefálica , Encéfalo/citología , Encéfalo/fisiología , Encéfalo/ultraestructura , Calcio/metabolismo , Diferenciación Celular , Proliferación Celular , Humanos , Ratones , Microglía/citología , Microglía/fisiología , Microglía/ultraestructura , Microscopía de Fluorescencia por Excitación Multifotónica/instrumentación , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Enfermedades del Sistema Nervioso/etiología , Enfermedades del Sistema Nervioso/patología , Neurotransmisores/fisiología , Oligodendroglía/citología , Oligodendroglía/fisiología , Oligodendroglía/ultraestructura , Sinapsis/fisiología , Sinapsis/ultraestructura
13.
Cell Mol Life Sci ; 69(5): 809-17, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21833580

RESUMEN

Prior studies have reported that metallothionein I/II (MT) promote regenerative axonal sprouting and neurite elongation of a variety of central nervous system neurons after injury. In this study, we evaluated whether MT is capable of modulating regenerative axon outgrowth of neurons from the peripheral nervous system. The effect of MT was firstly investigated in dorsal root ganglion (DRG) explants, where axons were scratch-injured in the presence or absence of exogenous MT. The application of MT led to a significant increase in regenerative sprouting of neurons 16 h after injury. We show that the pro-regenerative effect of MT involves an interaction with the low-density lipoprotein receptor megalin, which could be blocked using the competitive antagonist RAP. Pre-treatment with the mitogen-activated protein kinase (MAPK) inhibitor PD98059 also completely abrogated the effect of exogenous MT in promoting axonal outgrowth. Interestingly, we only observed megalin expression in neuronal soma and not axons in the DRG explants. To investigate this matter, an in vitro injury model was established using Campenot chambers, which allowed the application of MT selectively into either the axonal or cell body compartments after scratch injury was performed to axons. At 16 h after injury, regenerating axons were significantly longer only when exogenous MT was applied solely to the soma compartment, in accordance with the localized expression of megalin in neuronal cell bodies. This study provides a clear indication that MT promotes axonal regeneration of DRG neurons, via a megalin- and MAPK-dependent mechanism.


Asunto(s)
Axones/fisiología , Ganglios Espinales/patología , Metalotioneína/farmacología , Regeneración Nerviosa , Neuronas/metabolismo , Animales , Axones/efectos de los fármacos , Axotomía , Células Cultivadas , Inhibidores Enzimáticos/farmacología , Flavonoides/farmacología , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Ratones , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neuronas/efectos de los fármacos
14.
Neurosci Res ; 187: 45-51, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36347403

RESUMEN

Each oligodendrocyte (OC) forms myelin approximately in around 10 different axons to coordinate information transfer by regulating conduction velocity in the central nervous system (CNS). In the classical view, myelin has been considered a static structure that rarely turns over under healthy conditions because myelin tightly holds axons by their laminar complex structure. However, in recent decades, the classical views of static myelin have been renewed with pioneering studies that showed plastic changes in myelin throughout life with new experiences, such as the acquisition of new motor skills and the formation of memory. These changes in myelin regulate conduction velocity to optimize the temporal pattern of neuronal circuit activity among distinct brain regions associated with skill learning and memory. Here, we introduce pioneering studies and discuss the implications of plastic myelin on neural circuits and brain function.


Asunto(s)
Axones , Vaina de Mielina , Axones/fisiología , Oligodendroglía/fisiología , Neuronas , Encéfalo
15.
Nagoya J Med Sci ; 85(4): 772-778, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38155622

RESUMEN

Microglial processes survey the brain parenchyma, but it is unknown whether this process is influenced by the cell activity of nearby microglia under physiological conditions. Herein, we showed that microglial process dynamics differ when facilitated by astrocytic activity and pre-synaptic activity. The results revealed distinct microglial process dynamics associated with the activity of other brain cells.


Asunto(s)
Astrocitos , Microglía , Humanos , Microglía/fisiología , Encéfalo
16.
Nihon Yakurigaku Zasshi ; 158(5): 359-361, 2023.
Artículo en Japonés | MEDLINE | ID: mdl-37673610

RESUMEN

Microglia are the only immune cells in the central nervous system. It has been shown that microglia actively regulate the number of neurons by participating in the cell death of neural stem cells during development and maturation. In addition, recent optical techniques have enabled in vivo imaging, which has revealed the function of microglia on synapses. Microglia regularly monitor synaptic activity and remove synapses that show abnormal activity in the event of brain infarction or other disorders. During development, microglia contribute to the formation of immature synapses by contacting dendrites during early synapse formation, and they are also involved in the de-synaptic process by selectively removing weakly active synapses through the use of classical complement cascade signaling. Furthermore, these abnormalities are known to contribute to the development of autism during development and to the development of Alzheimer's disease during maturation. In addition to this, microglia also contribute to plastic changes in synapses during the learning process in maturation. Furthermore, by modifying synaptic activity, microglia are known to be involved in changes in the activity of neuronal circuits. In addition to these synaptic functions, microglia are also known to be involved in the permeability of the blood-brain barrier. In this chapter, these functions will be summarized and discussed.


Asunto(s)
Enfermedad de Alzheimer , Fenómenos Fisiológicos del Sistema Nervioso , Humanos , Microglía , Sistema Nervioso Central , Barrera Hematoencefálica
17.
Front Cell Neurosci ; 17: 1154196, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38026691

RESUMEN

Oligodendrocytes (OCs) form myelin around axons, which is dependent on neuronal activity. This activity-dependent myelination plays a crucial role in training and learning. Previous studies have suggested that neuronal activity regulates proliferation and differentiation of oligodendrocyte precursor cells (OPCs) and myelination. In addition, deficient activity-dependent myelination results in impaired motor learning. However, the functional response of OC responsible for neuronal activity and their pathological changes is not fully elucidated. In this research, we aimed to understand the activity-dependent OC responses and their different properties by observing OCs using in vivo two-photon microscopy. We clarified that the Ca2+ activity in OCs is neuronal activity dependent and differentially regulated by neurotransmitters such as glutamate or adenosine triphosphate (ATP). Furthermore, in 5-month-old mice models of Alzheimer's disease, a period before the appearance of behavioral abnormalities, the elevated Ca2+ responses in OCs are ATP dependent, suggesting that OCs receive ATP from damaged tissue. We anticipate that our research will help in determining the correct therapeutic strategy for neurodegenerative diseases beyond the synapse.

18.
Sci Rep ; 13(1): 7871, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37188694

RESUMEN

Injury to mature neurons induces downregulated KCC2 expression and activity, resulting in elevated intracellular [Cl-] and depolarized GABAergic signaling. This phenotype mirrors immature neurons wherein GABA-evoked depolarizations facilitate neuronal circuit maturation. Thus, injury-induced KCC2 downregulation is broadly speculated to similarly facilitate neuronal circuit repair. We test this hypothesis in spinal cord motoneurons injured by sciatic nerve crush, using transgenic (CaMKII-KCC2) mice wherein conditional CaMKIIα promoter-KCC2 expression coupling selectively prevents injury-induced KCC2 downregulation. We demonstrate, via an accelerating rotarod assay, impaired motor function recovery in CaMKII-KCC2 mice relative to wild-type mice. Across both cohorts, we observe similar motoneuron survival and re-innervation rates, but differing post-injury reorganization patterns of synaptic input to motoneuron somas-for wild-type, both VGLUT1-positive (excitatory) and GAD67-positive (inhibitory) terminal counts decrease; for CaMKII-KCC2, only VGLUT1-positive terminal counts decrease. Finally, we recapitulate the impaired motor function recovery of CaMKII-KCC2 mice in wild-type mice by administering local spinal cord injections of bicuculline (GABAA receptor blockade) or bumetanide (lowers intracellular [Cl-] by NKCC1 blockade) during the early post-injury period. Thus, our results provide direct evidence that injury-induced KCC2 downregulation enhances motor function recovery and suggest an underlying mechanism of depolarizing GABAergic signaling driving adaptive reconfiguration of presynaptic GABAergic input.


Asunto(s)
Traumatismos de los Nervios Periféricos , Simportadores , Ratones , Animales , Regulación hacia Abajo , Recuperación de la Función , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Neuronas Motoras/metabolismo , Receptores de GABA-A/metabolismo , Traumatismos de los Nervios Periféricos/metabolismo , Nervio Ciático/lesiones , Simportadores/genética , Simportadores/metabolismo
19.
Cell Rep ; 42(2): 112092, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36753421

RESUMEN

The relationships between tissue-resident microglia and early macrophages, especially their lineage segregation outside the yolk sac, have been recently explored, providing a model in which a conversion from macrophages seeds microglia during brain development. However, spatiotemporal evidence to support such microglial seeding in situ and to explain how it occurs has not been obtained. By cell tracking via slice culture, intravital imaging, and Flash tag-mediated or genetic labeling, we find that intraventricular CD206+ macrophages, which are abundantly observed along the inner surface of the mouse cerebral wall, frequently enter the pallium at embryonic day 12. Immunofluorescence of the tracked cells show that postinfiltrative macrophages in the pallium acquire microglial properties while losing the CD206+ macrophage phenotype. We also find that intraventricular macrophages are supplied transepithelially from the roof plate. This study demonstrates that the "roof plate→ventricle→pallium" route is an essential path for microglial colonization into the embryonic mouse brain.


Asunto(s)
Encéfalo , Microglía , Animales , Ratones , Microglía/metabolismo , Encéfalo/metabolismo , Macrófagos/metabolismo , Fenotipo
20.
Sci Rep ; 13(1): 6851, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37100813

RESUMEN

Lipid droplets (LDs) have been observed in the nuclei of hepatocytes; however, their significance in liver disease remains unresolved. Our purpose was to explore the pathophysiological features of intranuclear LDs in liver diseases. We included 80 patients who underwent liver biopsies; the specimens were dissected and fixed for electron microscopy analysis. Depending on the presence of adjacent cytoplasmic invagination of the nuclear membrane, LDs in the nuclei were classified into two types: nucleoplasmic LDs (nLDs) and cytoplasmic LD invagination with nucleoplasmic reticulum (cLDs in NR). nLDs were found in 69% liver samples and cLDs in NR were found in 32%; no correlation was observed between the frequencies of the two LD types. nLDs were frequently found in hepatocytes of patients with nonalcoholic steatohepatitis, whereas cLDs in NR were absent from the livers of such patients. Further, cLDs in NR were often found in hepatocytes of patients with lower plasma cholesterol level. This indicates that nLDs do not directly reflect cytoplasmic lipid accumulation and that formation of cLDs in NR is inversely correlated to the secretion of very low-density lipoproteins. Positive correlations were found between the frequencies of nLDs and endoplasmic reticulum (ER) luminal expansion, suggesting that nLDs are formed in the nucleus upon ER stress. This study unveiled the presence of two distinct nuclear LDs in various liver diseases.


Asunto(s)
Gotas Lipídicas , Hepatopatías , Humanos , Gotas Lipídicas/metabolismo , Hígado/metabolismo , Hepatocitos/metabolismo , Núcleo Celular/metabolismo , Hepatopatías/metabolismo , Metabolismo de los Lípidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA