Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
PLoS Genet ; 16(5): e1008815, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32453722

RESUMEN

Trimethylguanosine synthase 1 (TGS1) is a conserved enzyme that mediates formation of the trimethylguanosine cap on several RNAs, including snRNAs and telomerase RNA. Previous studies have shown that TGS1 binds the Survival Motor Neuron (SMN) protein, whose deficiency causes spinal muscular atrophy (SMA). Here, we analyzed the roles of the Drosophila orthologs of the human TGS1 and SMN genes. We show that the Drosophila TGS1 protein (dTgs1) physically interacts with all subunits of the Drosophila Smn complex (Smn, Gem2, Gem3, Gem4 and Gem5), and that a human TGS1 transgene rescues the mutant phenotype caused by dTgs1 loss. We demonstrate that both dTgs1 and Smn are required for viability of retinal progenitor cells and that downregulation of these genes leads to a reduced eye size. Importantly, overexpression of dTgs1 partially rescues the eye defects caused by Smn depletion, and vice versa. These results suggest that the Drosophila eye model can be exploited for screens aimed at the identification of genes and drugs that modify the phenotypes elicited by Tgs1 and Smn deficiency. These modifiers could help to understand the molecular mechanisms underlying SMA pathogenesis and devise new therapies for this genetic disease.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila/crecimiento & desarrollo , Proteínas de Unión al ARN/genética , Proteínas del Complejo SMN/genética , Animales , Regulación hacia Abajo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Ojo/crecimiento & desarrollo , Ojo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Genes Letales , Tamaño de los Órganos , Proteínas de Unión al ARN/metabolismo , Proteínas del Complejo SMN/metabolismo
2.
J Cell Sci ; 133(2)2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31907206

RESUMEN

Morgana (Mora, also known as CHORD in flies) and its mammalian homologue, called CHORDC1 or CHP1, is a highly conserved cysteine and histidine-rich domain (CHORD)-containing protein that has been proposed to function as an Hsp90 co-chaperone. Morgana deregulation promotes carcinogenesis in both mice and humans while, in Drosophila, loss of mora causes lethality and a complex mitotic phenotype that is rescued by a human morgana transgene. Here, we show that Drosophila Mora localises to mitotic spindles and co-purifies with the Hsp90-R2TP-TTT supercomplex and with additional well-known Hsp90 co-chaperones. Acute inhibition of Mora function in the early embryo results in a dramatic reduction in centrosomal microtubule stability, leading to small spindles nucleated from mitotic chromatin. Purified Mora binds to microtubules directly and promotes microtubule polymerisation in vitro, suggesting that Mora directly regulates spindle dynamics independently of its Hsp90 co-chaperone role.


Asunto(s)
Proteínas de Drosophila/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Microtúbulos/metabolismo , Mitosis/genética , Huso Acromático/metabolismo , Animales , Humanos , Polimerizacion
3.
Nucleic Acids Res ; 45(6): 3068-3085, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-27940556

RESUMEN

Drosophila telomeres are sequence-independent structures maintained by transposition to chromosome ends of three specialized retroelements rather than by telomerase activity. Fly telomeres are protected by the terminin complex that includes the HOAP, HipHop, Moi and Ver proteins. These are fast evolving, non-conserved proteins that localize and function exclusively at telomeres, protecting them from fusion events. We have previously suggested that terminin is the functional analogue of shelterin, the multi-protein complex that protects human telomeres. Here, we use electrophoretic mobility shift assay (EMSA) and atomic force microscopy (AFM) to show that Ver preferentially binds single-stranded DNA (ssDNA) with no sequence specificity. We also show that Moi and Ver form a complex in vivo. Although these two proteins are mutually dependent for their localization at telomeres, Moi neither binds ssDNA nor facilitates Ver binding to ssDNA. Consistent with these results, we found that Ver-depleted telomeres form RPA and γH2AX foci, like the human telomeres lacking the ssDNA-binding POT1 protein. Collectively, our findings suggest that Drosophila telomeres possess a ssDNA overhang like the other eukaryotes, and that the terminin complex is architecturally and functionally similar to shelterin.


Asunto(s)
Daño del ADN , ADN de Cadena Simple/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Telómero/metabolismo , Animales , Proteínas Cromosómicas no Histona/fisiología , Reparación del ADN , ADN de Cadena Simple/ultraestructura , Drosophila/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/fisiología , Proteínas de Drosophila/ultraestructura , Microscopía de Fuerza Atómica , Dominios Proteicos , Multimerización de Proteína , Proteína de Replicación A/metabolismo , Proteínas de Unión a Telómeros/química , Proteínas de Unión a Telómeros/ultraestructura
4.
Genes Dev ; 23(16): 1876-81, 2009 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-19684111

RESUMEN

The Drosophila Augmin complex localizes gamma-tubulin to the microtubules of the mitotic spindle, regulating the density of spindle microtubules in tissue culture cells. Here, we identify the microtubule-associated protein Msd1 as a new component of the Augmin complex and demonstrate directly that it is required for nucleation of microtubules from within the mitotic spindle. Although Msd1 is necessary for embryonic syncytial mitoses, flies possessing a mutation in msd1 are viable. Importantly, however, in the absence of centrosomes, microtubule nucleation from within the spindle becomes essential. Thus, the Augmin complex has a crucial role in the development of the fly.


Asunto(s)
Centrosoma/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Huso Acromático , Animales , Núcleo Celular/metabolismo , Células Cultivadas , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Femenino , Masculino , Proteínas Asociadas a Microtúbulos/genética , Mutación , Tubulina (Proteína)/metabolismo
5.
Virulence ; 15(1): 2313413, 2024 12.
Artículo en Inglés | MEDLINE | ID: mdl-38357909

RESUMEN

Over the last 20 years, the larva of the greater waxmoth, Galleria mellonella, has rapidly increased in popularity as an in vivo mammalian replacement model organism for the study of human pathogens. Experimental readouts of response to infection are most often limited to observing the melanization cascade and quantifying larval death and, whilst transcriptomic and proteomic approaches, and methods to determine microbial load are also used, a more comprehensive toolkit of profiling infection over time could transform the applicability of this model. As an invertebrate, Galleria harbour an innate immune system comprised of both humoral components and a repertoire of innate immune cells - termed haemocytes. Although information on subtypes of haemocytes exists, there are conflicting reports on their exact number and function. Flow cytometry has previously been used to assay Galleria haemocytes, but protocols include both centrifugation and fixation - physical methods which have the potential to affect haemocyte morphology prior to analysis. Here, we present a method for live haemocyte analysis by flow cytometry, revealing that Galleria haemocytes constitute only a single resolvable population, based on relative size or internal complexity. Using fluorescent zymosan particles, we extend our method to show that up to 80% of the Galleria haemocyte population display phagocytic capability. Finally, we demonstrate that the developed assay reliably replicates in vitro data, showing that cell wall ß-1,3-glucan masking by Candida albicans subverts phagocytic responses. As such, our method provides a new tool with which to rapidly assess phagocytosis and understand live infection dynamics in Galleria.


Asunto(s)
Mariposas Nocturnas , Proteómica , Animales , Humanos , Larva , Fagocitosis , Fagocitos , Mamíferos
6.
Chromosome Res ; 19(3): 321-33, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21484448

RESUMEN

The accurate segregation of duplicated chromosomes, essential for the development and viability of a eukaryotic organism, requires the formation of a robust microtubule (MT)-based spindle apparatus. Entry into mitosis or meiosis precipitates a cascade of signalling events which result in the activation of pathways responsible for a dramatic reorganisation of the MT cytoskeleton: through changes in the properties of MT-associated proteins, local concentrations of free tubulin dimer and through enhanced MT nucleation. The latter is generally thought to be driven by localisation and activation of γ-tubulin-containing complexes (γ-TuSC and γ-TuRC) at specific subcellular locations. For example, upon entering mitosis, animal cells concentrate γ-tubulin at centrosomes to tenfold the normal level during interphase, resulting in an aster-driven search and capture of chromosomes and bipolar mitotic spindle formation. Thus, in these cells, centrosomes have traditionally been perceived as the primary microtubule organising centre during spindle formation. However, studies in meiotic cells, plants and cell-free extracts have revealed the existence of complementary mechanisms of spindle formation, mitotic chromatin, kinetochores and nucleation from existing MTs or the cytoplasm can all contribute to a bipolar spindle apparatus. Here, we outline the individual known mechanisms responsible for spindle formation and formulate ideas regarding the relationship between them in assembling a functional spindle apparatus.


Asunto(s)
Microtúbulos/metabolismo , Mitosis/fisiología , Huso Acromático/metabolismo , Animales , Humanos
7.
PLoS Biol ; 6(4): e98, 2008 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-18433294

RESUMEN

The microtubule (MT) cytoskeleton is required for many aspects of cell function, including the transport of intracellular materials, the maintenance of cell polarity, and the regulation of mitosis. These functions are coordinated by MT-associated proteins (MAPs), which work in concert with each other, binding MTs and altering their properties. We have used a MT cosedimentation assay, combined with 1D and 2D PAGE and mass spectrometry, to identify over 250 MAPs from early Drosophila embryos. We have taken two complementary approaches to analyse the cellular function of novel MAPs isolated using this approach. First, we have carried out an RNA interference (RNAi) screen, identifying 21 previously uncharacterised genes involved in MT organisation. Second, we have undertaken a bioinformatics analysis based on binary protein interaction data to produce putative interaction networks of MAPs. By combining both approaches, we have identified and validated MAP complexes with potentially important roles in cell cycle regulation and mitosis. This study therefore demonstrates that biologically relevant data can be harvested using such a multidisciplinary approach, and identifies new MAPs, many of which appear to be important in cell division.


Asunto(s)
Ciclo Celular/fisiología , Microtúbulos/metabolismo , Mitosis/fisiología , Animales , Centrosoma/metabolismo , Proteínas de Drosophila/metabolismo , Embrión no Mamífero/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Interferencia de ARN , Proteínas Ligasas SKP Cullina F-box/metabolismo
8.
Bio Protoc ; 10(22): e3821, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33659473

RESUMEN

Cleavable Affinity Purification (Cl-AP) uses a tripartite system of Protein-A-Streptavidin beads and nanobodies, coupled with a biotinylated, thiol-cleavable linker, providing one-step affinity purification from lysates of tissues expressing tagged proteins. This technique allows fluorescent versions of mitotic protein complexes to be isolated intact from cells, for use in biophysical and microscopy-based assays, overcoming the traditional limitations of reductionist approaches. We have used this technique successfully to purify both GFP-tagged and mCherry-tagged proteins, and their interacting partners, expressed in Drosophila melanogaster embryos. Although we demonstrate the efficacy of the GFP-binding protein and RFP-binding protein nanobodies from Chromotek, in theory any antibody could be coupled to the beads and used as a Cl-AP reagent.

9.
Elife ; 92020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31933481

RESUMEN

Eukaryotic cell division requires the mitotic spindle, a microtubule (MT)-based structure which accurately aligns and segregates duplicated chromosomes. The dynamics of spindle formation are determined primarily by correctly localising the MT nucleator, γ-Tubulin Ring Complex (γ-TuRC), within the cell. A conserved MT-associated protein complex, Augmin, recruits γ-TuRC to pre-existing spindle MTs, amplifying their number, in an essential cellular phenomenon termed 'branching' MT nucleation. Here, we purify endogenous, GFP-tagged Augmin and γ-TuRC from Drosophila embryos to near homogeneity using a novel one-step affinity technique. We demonstrate that, in vitro, while Augmin alone does not affect Tubulin polymerisation dynamics, it stimulates γ-TuRC-dependent MT nucleation in a cell cycle-dependent manner. We also assemble and visualise the MT-Augmin-γ-TuRC-MT junction using light microscopy. Our work therefore conclusively reconstitutes branching MT nucleation. It also provides a powerful synthetic approach with which to investigate the emergence of cellular phenomena, such as mitotic spindle formation, from component parts.


Asunto(s)
Drosophila melanogaster/embriología , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Animales , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Cromosomas/metabolismo , Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/metabolismo , Técnicas In Vitro , Proteínas de Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Centro Organizador de los Microtúbulos/metabolismo , Mitosis , Complejos Multiproteicos/metabolismo , Unión Proteica , Huso Acromático/metabolismo
10.
Elife ; 82019 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-30916645

RESUMEN

Representing the dynamic nature of biological processes is a challenge. This article describes a collaborative project in which the authors - a philosopher of biology, an artist and a cell biologist - explore how best to represent the entire process of cell division in one connected image. This involved a series of group Drawing Labs, one-to-one sessions, and discussions between the authors. The drawings generated during the collaboration were then reviewed by four experts in cell division. We propose that such an approach has value, both in communicating the dynamic nature of biological processes and in generating new insights and hypotheses that can be tested by artists and scientists.


Asunto(s)
División Celular , Ilustración Médica , Humanos , Colaboración Intersectorial
11.
PLoS One ; 14(4): e0214610, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30969984

RESUMEN

Glycogen synthase kinase-3 (GSK3) is over-expressed and hyperactivated in non-small cell lung carcinoma (NSCLC) and plays a role in ensuring the correct alignment of chromosomes on the metaphase plate during mitosis through regulation of microtubule stability. This makes the enzyme an attractive target for cancer therapy. We examined the effects of a selective cell-permeant GSK3 inhibitor (CHIR99021), used alone or in combination with paclitaxel, using an in vitro cell growth assay, a quantitative chromosome alignment assay, and a tumor xenograft model. CHIR99021 inhibits the growth of human H1975 and H1299 NSCLC cell lines in a synergistic manner with paclitaxel. CHIR99021 and paclitaxel promoted a synergistic defect in chromosomal alignment when compared to each compound administered as monotherapy. Furthermore, we corroborated our in vitro findings in a mouse tumor xenograft model. Our results demonstrate that a GSK3 inhibitor and paclitaxel act synergistically to inhibit the growth of NSCLC cells in vitro and in vivo via a mechanism that may involve converging modes of action on microtubule spindle stability and thus chromosomal alignment during metaphase. Our findings provide novel support for the use of the GSK3 inhibitor, CHIR99021, alongside taxol-based chemotherapy in the treatment of human lung cancer.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Glucógeno Sintasa Quinasa 3/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Paclitaxel/uso terapéutico , Piridinas/uso terapéutico , Pirimidinas/uso terapéutico , Animales , Antineoplásicos Fitogénicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Aberraciones Cromosómicas/efectos de los fármacos , Sinergismo Farmacológico , Quimioterapia Combinada , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3/genética , Humanos , Masculino , Ratones , Ratones Desnudos , Paclitaxel/farmacología , Piridinas/farmacología , Pirimidinas/farmacología , Interferencia de ARN , ARN Interferente Pequeño/metabolismo
12.
Essays Biochem ; 62(6): 803-813, 2018 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-30429281

RESUMEN

The formation of a robust, bi-polar spindle apparatus, capable of accurate chromosome segregation, is a complex process requiring the co-ordinated nucleation, sorting, stabilization and organization of microtubules (MTs). Work over the last 25 years has identified protein complexes that act as functional modules to nucleate spindle MTs at distinct cellular sites such as centrosomes, kinetochores, chromatin and pre-existing MTs themselves. There is clear evidence that the extent to which these different MT nucleating pathways contribute to spindle mass both during mitosis and meiosis differs not only between organisms, but also in different cell types within an organism. This plasticity contributes the robustness of spindle formation; however, whether such plasticity is present in other aspects of spindle formation is less well understood. Here, we review the known roles of the protein complexes responsible for spindle pole focusing, investigating the evidence that these, too, act co-ordinately and differentially, depending on cellular context. We describe relationships between MT minus-end directed motors dynein and HSET/Ncd, depolymerases including katanin and MCAK, and direct minus-end binding proteins such as nuclear-mitotic apparatus protein, ASPM and Patronin/CAMSAP. We further explore the idea that the focused spindle pole acts as a non-membrane bound condensate and suggest that the metaphase spindle pole be treated as a transient organelle with context-dependent requirements for function.


Asunto(s)
Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mitosis , Proteínas Nucleares/metabolismo , Polos del Huso/metabolismo , Animales , Humanos
13.
Elife ; 72018 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-30475206

RESUMEN

Several studies have shown that RNAi-mediated depletion of splicing factors (SFs) results in mitotic abnormalities. However, it is currently unclear whether these abnormalities reflect defective splicing of specific pre-mRNAs or a direct role of the SFs in mitosis. Here, we show that two highly conserved SFs, Sf3A2 and Prp31, are required for chromosome segregation in both Drosophila and human cells. Injections of anti-Sf3A2 and anti-Prp31 antibodies into Drosophila embryos disrupt mitotic division within 1 min, arguing strongly against a splicing-related mitotic function of these factors. We demonstrate that both SFs bind spindle microtubules (MTs) and the Ndc80 complex, which in Sf3A2- and Prp31-depleted cells is not tightly associated with the kinetochores; in HeLa cells the Ndc80/HEC1-SF interaction is restricted to the M phase. These results indicate that Sf3A2 and Prp31 directly regulate interactions among kinetochores, spindle microtubules and the Ndc80 complex in both Drosophila and human cells.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas del Ojo/genética , Mitosis , Proteínas Nucleares/genética , Factores de Empalme de ARN/genética , Animales , Anticuerpos Neutralizantes/farmacología , Segregación Cromosómica/efectos de los fármacos , Secuencia Conservada , Proteínas del Citoesqueleto , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Embrión no Mamífero , Proteínas del Ojo/antagonistas & inhibidores , Proteínas del Ojo/metabolismo , Regulación de la Expresión Génica , Células HeLa , Humanos , Cinetocoros/efectos de los fármacos , Cinetocoros/metabolismo , Cinetocoros/ultraestructura , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Mitosis/efectos de los fármacos , Proteínas Nucleares/metabolismo , Unión Proteica , Factores de Empalme de ARN/antagonistas & inhibidores , Factores de Empalme de ARN/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Huso Acromático/efectos de los fármacos , Huso Acromático/metabolismo , Huso Acromático/ultraestructura
15.
Biol Open ; 6(5): 654-663, 2017 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-28351835

RESUMEN

The hetero-octameric protein complex, Augmin, recruits γ-Tubulin ring complex (γ-TuRC) to pre-existing microtubules (MTs) to generate branched MTs during mitosis, facilitating robust spindle assembly. However, despite a recent partial reconstitution of the human Augmin complex in vitro, the molecular basis of this recruitment remains unclear. Here, we used immuno-affinity purification of in vivo Augmin from Drosophila and cross-linking/mass spectrometry to identify distance restraints between residues within the eight Augmin subunits in the absence of any other structural information. The results allowed us to predict potential interfaces between Augmin and γ-TuRC. We tested these predictions biochemically and in the Drosophila embryo, demonstrating that specific regions of the Augmin subunits, Dgt3, Dgt5 and Dgt6 all directly bind the γ-TuRC protein, Dgp71WD, and are required for the accumulation of γ-TuRC, but not Augmin, to the mitotic spindle. This study therefore substantially increases our understanding of the molecular mechanisms underpinning MT-dependent MT nucleation.

16.
Methods Cell Biol ; 129: 229-249, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26175442

RESUMEN

Microinjection is a powerful technique that can be used to study protein function. Early Drosophila embryos are particularly amenable to microinjection due to their large size and their single cell status. Here, we report methods to microinject these embryos with various reagents to study the function of proteins at centrosomes and centrosome function more generally. Although precise details vary between laboratories, many aspects of the process are conserved. We describe the process from setting up a fly cage to imaging the injected embryos on a spinning disk confocal microscope and use specific examples to highlight the potency of this technique.


Asunto(s)
Centrosoma/ultraestructura , Drosophila melanogaster/citología , Animales , Centrosoma/fisiología , Microinyecciones , Técnicas de Cultivo de Tejidos
17.
Front Cell Dev Biol ; 3: 74, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26636083

RESUMEN

Over the last two decades, the small GTPase Ran has emerged as a central regulator of both mitosis and meiosis, particularly in the generation, maintenance, and regulation of the microtubule (MT)-based bipolar spindle. Ran-regulated pathways in mitosis bear many similarities to the well-characterized functions of Ran in nuclear transport and, as with transport, the majority of these mitotic effects are mediated through affecting the physical interaction between karyopherins and Spindle Assembly Factors (SAFs)-a loose term describing proteins or protein complexes involved in spindle assembly through promoting nucleation, stabilization, and/or depolymerization of MTs, through anchoring MTs to specific structures such as centrosomes, chromatin or kinetochores, or through sliding MTs along each other to generate the force required to achieve bipolarity. As such, the Ran-mediated pathway represents a crucial functional module within the wider spindle assembly landscape. Research into mitosis using the model organism Drosophila melanogaster has contributed substantially to our understanding of centrosome and spindle function. However, in comparison to mammalian systems, very little is known about the contribution of Ran-mediated pathways in Drosophila mitosis. This article sets out to summarize our understanding of the roles of the Ran pathway components in Drosophila mitosis, focusing on the syncytial blastoderm embryo, arguing that it can provide important insights into the conserved functions on Ran during spindle formation.

18.
Curr Biol ; 25(13): 1777-83, 2015 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-26096973

RESUMEN

Mitotic spindles are primarily composed of microtubules (MTs), generated by polymerization of α- and ß-Tubulin hetero-dimers. Tubulins undergo a series of protein folding and post-translational modifications in order to fulfill their functions. Defects in Tubulin polymerization dramatically affect spindle formation and disrupt chromosome segregation. We recently described a role for the product of the conserved misato (mst) gene in regulating mitotic MT generation in flies, but the molecular function of Mst remains unknown. Here, we use affinity purification mass spectrometry (AP-MS) to identify interacting partners of Mst in the Drosophila embryo. We demonstrate that Mst associates stoichiometrically with the hetero-octameric Tubulin Chaperone Protein-1 (TCP-1) complex, with the hetero-hexameric Tubulin Prefoldin complex, and with proteins having conserved roles in generating MT-competent Tubulin. We show that RNAi-mediated in vivo depletion of any TCP-1 subunit phenocopies the effects of mutations in mst or the Prefoldin-encoding gene merry-go-round (mgr), leading to monopolar and disorganized mitotic spindles containing few MTs. Crucially, we demonstrate that Mst, but not Mgr, is required for TCP-1 complex stability and that both the efficiency of Tubulin polymerization and Tubulin stability are drastically compromised in mst mutants. Moreover, our structural bioinformatic analyses indicate that Mst resembles the three-dimensional structure of Tubulin monomers and might therefore occupy the TCP-1 complex central cavity. Collectively, our results suggest that Mst acts as a co-factor of the TCP-1 complex, playing an essential role in the Tubulin-folding processes required for proper assembly of spindle MTs.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Chaperonina con TCP-1/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Microtúbulos/metabolismo , Mitosis/fisiología , Huso Acromático/fisiología , Tubulina (Proteína)/metabolismo , Animales , Western Blotting , Drosophila , Inmunoprecipitación , Chaperonas Moleculares/metabolismo , Polimerizacion , Interferencia de ARN , Huso Acromático/metabolismo , Imagen de Lapso de Tiempo
19.
Commun Integr Biol ; 7: e28512, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25053984

RESUMEN

Upon entry into mitosis, many microtubules are nucleated that coordinately integrate into a stable, yet dynamic, mitotic spindle apparatus. In a recent publication, we examined microtubule-generating pathways within a single model system, the Drosophila syncytial embryo. We found that, following depolymerisation of metaphase spindle microtubules by cold treatment, spindles regenerate predominantly from microtubules nucleated within the vicinity of chromatin. We also showed this chromatin-mediated microtubule nucleation is mediated by the Drosophila homolog of a vertebrate spindle assembly factor (SAF), HURP and is dependent on the conserved microtubule amplifying protein complex, Augmin. Here, we expand our investigation into Drosophila SAFs, providing evidence that, in vitro, both D-HURP and D-TPX2 are able to bind to and stabilize microtubules. We show that GFP-D-HURP purified from embryos interacts with Importin-ß and Augmin and, consistent with this, demonstrate that the underlying basis of chromatin-mediated microtubule nucleation in Drosophila syncytial embryos is dependent on Ran-GTP.

20.
Dev Cell ; 28(1): 81-93, 2014 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-24389063

RESUMEN

The mitotic spindle is defined by its organized, bipolar mass of microtubules, which drive chromosome alignment and segregation. Although different cells have been shown to use different molecular pathways to generate the microtubules required for spindle formation, how these pathways are coordinated within a single cell is poorly understood. We have tested the limits within which the Drosophila embryonic spindle forms, disrupting the inherent temporal control that overlays mitotic microtubule generation, interfering with the molecular mechanism that generates new microtubules from preexisting ones, and disrupting the spatial relationship between microtubule nucleation and the usually dominant centrosome. Our work uncovers the possible routes to spindle formation in embryos and establishes the central role of Augmin in all microtubule-generating pathways. It also demonstrates that the contributions of each pathway to spindle formation are integrated, highlighting the remarkable flexibility with which cells can respond to perturbations that limit their capacity to generate microtubules.


Asunto(s)
Centrómero/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Huso Acromático/metabolismo , Animales , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas Asociadas a Microtúbulos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA