Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Oecologia ; 196(1): 223-234, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33934223

RESUMEN

Apex predators can shape communities via cascading top-down effects, but the degree to which such effects depend on predator life history traits is largely unknown. Within carnivore guilds, complex hierarchies of dominance facilitate coexistence, whereby subordinate species avoid dominant counterparts by partitioning space, time, or both. We investigated whether a major life history trait (hibernation) in an apex carnivore (black bears Ursus americanus) mediated its top-down effects on the spatio-temporal dynamics of three sympatric mesocarnivore species (coyotes Canis latrans, bobcats Lynx rufus, and gray foxes Urocyon cinereoargenteus) across a 15,000 km2 landscape in the western USA. We compared top-down, bottom-up, and environmental effects on these mesocarnivores using an integrated modeling approach. Black bears exerted top-down effects that varied as a function of hibernation and were stronger than bottom-up or environmental impacts. High black bear activity in summer and fall appeared to buffer the most subordinate mesocarnivore (gray foxes) from competition with dominant mesocarnivores (coyotes and bobcats), which were in turn released by black bear hibernation in winter and early spring. The mesocarnivore responses occurred in space (i.e., altered occupancy and site visitation intensity) rather than time (i.e., diel activity patterns unaffected). These results suggest that the spatio-temporal dynamics of mesocarnivores in this system were principally shaped by a spatial predator cascade of interference competition mediated by black bear hibernation. Thus, certain life history traits of apex predators might facilitate coexistence among competing species over broad time scales, with complex implications for lower trophic levels.


Asunto(s)
Carnívoros , Lynx , Ursidae , Animales , Clima , Zorros
2.
Sci Total Environ ; 921: 170750, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38336073

RESUMEN

Anthropogenic disturbances, including extraction of natural resources and development of alternative energy, are reducing and fragmenting habitat for wildlife across the globe. Effects of those disturbances have been explored by studying populations that migrate through oil and gas fields or alternative energy facilities. Extraction of minerals, including precious metals and lithium, is increasing rapidly in remote areas, which results in dramatically altered landscapes in areas of resident populations of wildlife. Our goal was to examine how a resident population of American pronghorn (Antilocapra americana) in the Great Basin ecosystem selected resources near a large-scale disturbance year around. We investigated how individuals selected resources around a large, open-pit gold mine. We classified levels of disturbance associated with the mine, and used a random forest model to select ecological covariates associated with habitat selection by pronghorn. We used resource selection functions to examine how disturbances affected habitat selection by pronghorn both annually and seasonally. Pronghorn strongly avoided areas of high disturbance, which included open pits, heap leach fields, rock disposal areas, and a tram. Pronghorn selected areas near roads, although selection was strongest about 2 km away. We observed relatively broad variation among individuals in selection of resources, and how they responded to the mine. The Great Basin is a mineral-rich area that continues to be exploited for natural resources, especially minerals. Sagebrush-dependent species, including pronghorn, that rely on this critical habitat were directly affected by that transformation of the landscape, which is likely to increase with expansion of the mine. As extraction of minerals from remote landscapes around the world continues to fragment habitats for wildlife, increasing our understanding of impacts of those changes on behaviors of wildlife before populations decline, may assist in the mitigation and minimization of negative impacts on mineral-rich landscapes and on wildlife populations.


Asunto(s)
Ecosistema , Oro , Humanos , Animales , Conservación de los Recursos Naturales/métodos , Animales Salvajes , Rumiantes , Minerales
3.
Mov Ecol ; 11(1): 20, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37020241

RESUMEN

Animals select habitats based on food, water, space, and cover. Each of those components are essential to the ability of an individual to survive and reproduce in a particular habitat. Selection of resources is linked to reproductive fitness and individuals likely vary in how they select resources relative to their reproductive state: during pregnancy, while provisioning young when nutritional needs of the mother are high, but offspring are vulnerable to predation, or if they lose young to mortality. We investigated the effects of reproductive state on selection of resources by maternal female desert bighorn sheep (Ovis canadensis nelsoni) by comparing selection during the last trimester of gestation, following parturition when females were provisioning dependent young, and if the female lost an offspring. We captured, and recaptured each year, 32 female bighorn sheep at Lone Mountain, Nevada, during 2016-2018. Captured females were fit with GPS collars and those that were pregnant received vaginal implant transmitters. We used a Bayesian approach to estimate differences in selection between females provisioning and not provisioning offspring, as well as the length of time it took for females with offspring to return levels of selection similar to that observed prior to parturition. Females that were not provisioning offspring selected areas with higher risk of predation, but greater nutritional resources than those that were provisioning dependent young. When females were provisioning young immediately following parturition, females selected areas that were safe from predators, but had lower nutritional resources. Females displayed varying rates of return to selection strategies associated with access to nutritional resources as young grew and became more agile and less dependent on mothers. We observed clear and substantial shifts in selection of resources associated with reproductive state, and females exhibited tradeoffs in favor of areas that were safer from predators when provisioning dependent young despite loss of nutritional resources to support lactation. As young grew and became less vulnerable to predators, females returned to levels of selection that provided access to nutritional resources to restore somatic reserves lost during lactation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA