Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Planta ; 244(2): 333-46, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27061088

RESUMEN

MAIN CONCLUSION: NaCl alleviates Cd toxicity in Sesvium portulacastrum by maintaining plant water status and redox balance, protecting chloroplasts structure and inducing some potential Cd (2+) chelators as GSH and proline. It has been demonstrated that NaCl alleviates Cd-induced growth inhibition in the halophyte Sesuvium portulacastrum. However, the processes that mediate this effect are still unclear. In this work we combined physiological, biochemical and ultrastructural studies to highlight the effects of salt on the redox balance and photosynthesis in Cd-stressed plants. Seedlings were exposed to different Cd concentrations (0, 25 and 50 µM Cd) combined with low (0.09 mM) (LS), or high (200 mM) NaCl (HS) in hydroponic culture. Plant-water relations, photosynthesis rate, leaf gas exchange, chlorophyll fluorescence, chloroplast ultrastructure, and proline and glutathione concentrations were analyzed after 1 month of treatment. In addition, the endogenous levels of stress-related hormones were determined in plants subjected to 25 µM Cd combined with both NaCl concentrations. In plants with low salt supply (LS), Cd reduced growth, induced plant dehydration, disrupted chloroplast structure and functioning, decreased net CO2 assimilation rate (A) and transpiration rate (E), inhibited the maximum potential quantum efficiency (Fv/Fm) and the quantum yield efficiency (Φ PSII) of PSII, and enhanced the non-photochemical quenching (NPQ). The addition of 200 mM NaCl (HS) to the Cd-containing medium culture significantly mitigated Cd phytotoxicity. Hence, even at similar internal Cd concentrations, HS-Cd plants were less affected by Cd than LS-Cd ones. Hence, 200 mM NaCl significantly alleviates Cd-induced toxicity symptoms, growth inhibition, and photosynthesis disturbances. The cell ultrastructure was better preserved in HS-Cd plants but affected in LS-Cd plants. The HS-Cd plants showed also higher concentrations of reduced glutathione (GSH), proline and jasmonic acid (JA) than the LS-Cd plants. However, under LS-Cd conditions, plants maintained higher concentration of salicylic acid (SA) and abscisic acid (ABA) than the HS-Cd ones. We conclude that in S. portulacastrum alleviation of Cd toxicity by NaCl is related to the modification of GSH and proline contents as well as stress hormone levels thus protecting redox balance and photosynthesis.


Asunto(s)
Aizoaceae/efectos de los fármacos , Cadmio/toxicidad , Fotosíntesis/fisiología , Plantas Tolerantes a la Sal/efectos de los fármacos , Cloruro de Sodio/farmacología , Estrés Fisiológico , Ácido Abscísico/metabolismo , Ácido Abscísico/fisiología , Aizoaceae/crecimiento & desarrollo , Aizoaceae/metabolismo , Aizoaceae/ultraestructura , Cadmio/metabolismo , Clorofila/metabolismo , Cloroplastos/efectos de los fármacos , Cloroplastos/metabolismo , Cloroplastos/ultraestructura , Ciclopentanos/metabolismo , Glutatión/metabolismo , Oxidación-Reducción , Oxilipinas/metabolismo , Transpiración de Plantas/efectos de los fármacos , Prolina/metabolismo , Ácido Salicílico/metabolismo , Plantas Tolerantes a la Sal/metabolismo , Cloruro de Sodio/metabolismo , Agua/metabolismo
2.
Environ Sci Pollut Res Int ; 27(19): 23402-23410, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31119536

RESUMEN

Halophytes are able to tolerate relatively high concentrations of hazardous metals in a growing substrate, what makes them suitable candidates for phytoremediation of metal-contaminated soils. In this work, we aimed to study the physiological responses of the halophyte Sesuvium portulacastrum L. to Ni, with main focus on Ni localization, compartmentation and ligand environment, to decipher Ni tolerance and toxicity mechanisms. Seedlings were grown in hydroponic nutrient solution containing 0, 25, 50 and 100 µM Ni as NiCl2 for 3 weeks. Ni localization in leaves was assessed by micro-proton-induced X-ray emission (micro-PIXE). Ni ligand environment was studied by Ni K-edge X-ray absorption near edge structure (XANES). In addition, Ni-soluble, weakly bound/exchangeable and insoluble leaf tissue fractions were determined by sequential extraction. Results show that S. portulacastrum is able to tolerate up to ~ 500 µg g-1 dry weight (DW) of Ni in the shoots without significant growth reduction. At higher Ni concentrations (> 50 µM Ni in nutrient solution), chloroses were observed due to the accumulation of Ni in photosynthetically active chlorenchyma as revealed by micro-PIXE. Water storage tissue represented the main pool for Ni storage. Incorporation of Ni into Ca-oxalate crystals was also observed in some specimens, conferring tolerance to high leaf Ni concentrations. The majority of Ni (> 70%) was found in soluble tissue fraction. Ni K XANES revealed Ni bound mainly to O- (55%) and N-ligands (45%). Ni toxicity at higher Ni levels was associated with Ni binding to amino groups of proteins in cytosol of chlorenchyma and increased level of lipid peroxidation. Proline levels also increased at high Ni exposures and were associated with Ni-induced oxidative stress and alteration of water regime.


Asunto(s)
Aizoaceae , Plantas Tolerantes a la Sal , Biodegradación Ambiental , Ligandos , Níquel
3.
Plant Physiol Biochem ; 115: 390-399, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28432978

RESUMEN

It is well known that salinity reduces cadmium toxicity in halophytes. However, the possible interference of Cd with the mechanisms of salt tolerance is poorly explored. The aim of this study was to see whether Cd affects salt tolerance mechanisms in the halophyte Sesuvium portulacastrum. S. portulacastrum plants obtained from cuttings were grown in hydroponics for 3 weeks and then exposed to low (0.09 mM) or moderate (200 mM) NaCl concentrations, alone or in combination with 25 µM CdCl2. Microscopy observation revealed two strategies of salt tolerance: euhalophytism and secretion of salt by bladder cells. Cadmium exposure hardly influenced the total leaf Na+ concentrations. However, Cd supply delayed the salt-induced upregulation of AHA1 (plasma membrane H+-ATPase 1) and SOS1 (plasma membrane Na+ transporter "Salt Overly Sensitive 1"), genes that are essential for salt tolerance. Moreover, Cd induced the activation of BADH, coding for betaine aldehyde dehydrogenase, indicating enhanced osmotic stress due to Cd. Sodium-green fluorescence in protoplasts from plants grown with low or high NaCl, alone or in combination with Cd, revealed higher Na+ concentrations in the cytoplasm of Cd-exposed plants. Taken together the results indicate interference of Cd with salt tolerance mechanisms in S. portulacastrum. This may have consequences for the efficient use of halophytes in phytoremediation of Cd-contaminated saline soils.


Asunto(s)
Aizoaceae/efectos de los fármacos , Aizoaceae/metabolismo , Cadmio/toxicidad , Biodegradación Ambiental , Proteínas de Plantas/metabolismo , Salinidad , Tolerancia a la Sal , Plantas Tolerantes a la Sal/efectos de los fármacos , Plantas Tolerantes a la Sal/metabolismo , Sodio/metabolismo , Cloruro de Sodio/toxicidad
4.
Plant Physiol Biochem ; 108: 295-303, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27479784

RESUMEN

It has been shown that halophytes are able to successfully cope with heavy metal toxicity, suggesting their possible use for remediation of metal contaminated soils. In this work, Ni tolerance and accumulation in two halophytes, Sesuvium portulacastrum (L.) L. and Cakile maritima Scop. was investigated. Seedlings of both species were subjected hydroponically during 21 days to 0, 25, 50, and 100 µM of NiCl2. The growth and photosynthesis parameters revealed that S. portulacastrum tolerates Ni better than C. maritima. The photosynthesis activity, chlorophyll content and photosystem II integrity were less impacted in Ni-treated S. portulacastrum as compared to C. maritima, although, Ni accumulated in higher concentrations in the shoots of S. portulacastrum (1050 µg g-1 DW) than in those of C. maritima (550 µg g-1 DW). The subcellular fractionation of Ni in the shoots of both species showed that C. maritima accumulated about 65% of Ni in the soluble fraction, while 28% was associated with the cell walls. In S. portulacastrum 44% of the total cellular Ni was seen in the soluble fraction and 43% was bound to the cell walls. It can be concluded that S. portulacastrum tolerates Ni better than C. maritima, most probably due to a better ability to sequester Ni in the cell walls, restricting its accumulation in the soluble fraction.


Asunto(s)
Aizoaceae/efectos de los fármacos , Brassicaceae/efectos de los fármacos , Níquel/farmacocinética , Níquel/toxicidad , Plantas Tolerantes a la Sal/efectos de los fármacos , Aizoaceae/crecimiento & desarrollo , Aizoaceae/metabolismo , Brassicaceae/crecimiento & desarrollo , Brassicaceae/metabolismo , Carotenoides/metabolismo , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Clorofila/metabolismo , Fluorescencia , Plantas Tolerantes a la Sal/metabolismo , Especificidad de la Especie
5.
Front Plant Sci ; 6: 863, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26528320

RESUMEN

Besides their role in nitrogen supply to the host plants as a result of symbiotic N fixation, the association between legumes and Rhizobium could be useful for the rehabilitation of metal-contaminated soils by phytoextraction. A major limitation presents the metal-sensitivity of the bacterial strains. The aim of this work was to explore the usefulness of Sinorhizobium meliloti originated from a mining site for Cd phytoextraction by Medicago sativa. Inoculated and non-inoculated plants were cultivated for 60 d on soils containing 50 and/or 100 mg Cd kg(-1) soil. The inoculation hindered the occurrence of Cd- induced toxicity symptoms that appeared in the shoots of non-inoculated plants. This positive effect of S. meliloti colonization was accompanied by an increase in biomass production and improved nutrient acquisition comparatively to non-inoculated plants. Nodulation enhanced Cd absorption by the roots and Cd translocation to the shoots. The increase of plant biomass concomitantly with the increase of Cd shoot concentration in inoculated plants led to higher potential of Cd-phytoextraction in these plants. In the presence of 50 mg Cd kg(-1) in the soil, the amounts of Cd extracted in the shoots were 58 and 178 µg plant(-1) in non-inoculated and inoculated plants, respectively. This study demonstrates that this association M. sativa-S. meliloti may be an efficient biological system to extract Cd from contaminated soils.

6.
Environ Sci Pollut Res Int ; 22(14): 10769-77, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25758421

RESUMEN

It has previously been shown that certain halophytes can grow and produce biomass despite of the contamination of their saline biotopes with toxic metals. This suggests that these plants are able to cope with both salinity and heavy metal constraints. NaCl is well tolerated by halophytes and apparently can modulate their responses to Cd. However, the underlying mechanisms remain unclear. This study explores the impact of NaCl on growth, Cd accumulation, and Cd speciation in tissues of the halophyte Sesuvium portulacastrum. Seedlings of S. portulacastrum were exposed during 1 month to 0, 25, and 50 µM Cd combined with low salinity (LS, 0.09 mM NaCl) or high salinity (HS, 200 mM NaCl) levels. Growth parameters and total tissue Cd concentrations were determined, in leaves, stems, and root. Moreover, Cd speciation in these organs was assessed by specific extraction procedures. Results showed that, at LS, Cd induced chlorosis and necrosis and drastically reduced plant growth. However, addition of 200 mM NaCl to Cd containing medium alleviated significantly Cd toxicity symptoms and restored plant growth. NaCl reduced the concentration of Cd in the shoots; nevertheless, due to maintenance of higher biomass under HS, the quantity of accumulated Cd was not modified. NaCl modified the chemical form of Cd in the tissues by increasing the proportion of Cd bound to pectates, proteins, and chloride suggesting that this change in speciation is involved in the positive impact of NaCl on Cd tolerance. We concluded that the tolerance of S. portulacastrum to Cd was enhanced by NaCl. This effect is rather governed by the modification of the speciation of the accumulated Cd than by the reduction of Cd absorption and translocation.


Asunto(s)
Aizoaceae/metabolismo , Cadmio/toxicidad , Cloruro de Sodio/farmacología , Contaminantes del Suelo/toxicidad , Aizoaceae/efectos de los fármacos , Biodegradación Ambiental , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Salinidad , Plantas Tolerantes a la Sal/metabolismo , Plantones/efectos de los fármacos , Plantones/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA