Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Pathol Int ; 72(8): 402-410, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35763016

RESUMEN

Paired-like homeobox 2b (PHOX2B) is an established immunomarker for peripheral neuroblastoma and autonomic nervous system cells. We aimed to evaluate the utility of PHOX2B immunostaining in central nervous system (CNS) tumors with embryonal morphology. Fifty-one tumors were stained with PHOX2B and submitted for whole slide image analysis: 35 CNS tumors with embryonal morphology (31 CNS embryonal tumors and four gliomas); and 16 peripheral neuroblastomas were included for comparison. Diffuse nuclear immunopositivity was observed in all (16/16) neuroblastomas (primary and metastatic). Among CNS embryonal tumors, focal immunoreactivity for PHOX2B was observed in most (5/7) embryonal tumors with multilayered rosettes (ETMR) and a single high-grade neuroepithelial tumor (HGNET) with PLAGL2 amplification; the remaining 27 CNS tumors were essentially immunonegative (<0.05% positive). Among ETMR, PHOX2B expression was observed in a small overall proportion (0.04%-4.94%) of neoplastic cells but focally reached up to 39% in 1 mm 'hot spot' areas. In the PLAGL2-amplified case, 0.09% of the total neoplastic population was immunoreactive, with 0.53% in the 'hot spot' area. Care should be taken in interpreting PHOX2B immunopositivity in a differential diagnosis that includes metastatic neuroblastoma and CNS tumors; focal or patchy expression should not be considered definitively diagnostic of metastatic peripheral neuroblastoma.


Asunto(s)
Neoplasias Encefálicas , Proteínas de Homeodominio , Neoplasias de Células Germinales y Embrionarias , Neuroblastoma , Tumores Neuroectodérmicos Primitivos , Factores de Transcripción , Neoplasias Encefálicas/genética , Niño , Proteínas de Unión al ADN/metabolismo , Genes Homeobox , Proteínas de Homeodominio/genética , Humanos , Neoplasias de Células Germinales y Embrionarias/genética , Neuroblastoma/genética , Tumores Neuroectodérmicos Primitivos/genética , Proteínas de Unión al ARN , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-39067019

RESUMEN

This study evaluates the diagnostic utility of OLIG2 immunohistochemistry for distinguishing between pediatric high-grade gliomas (pHGG) and embryonal tumors (ETs) of the CNS. Utilizing a retrospective pediatric cohort (1990-2021) of 56 CNS tumors, classified initially as primitive neuroectodermal tumors or CNS ET, we reclassified the cases based on WHO CNS5 criteria after comprehensive review and additional molecular testing that included next-generation sequencing and DNA methylation profiling. Our results indicate that OLIG2 immunopositivity was negative or minimal in a significant subset of pHGG cases (6 out of 11). At the same time, it showed diffuse expression in all cases of CNS neuroblastomas with FOXR2 activation (5/5), demonstrating its limited specificity in differentiating between pHGG and ET. Variable OLIG2 expression in other ETs, ATRT, and ETMR suggests the broader diagnostic implications of the marker. Furthermore, incidental findings of OLIG2 positivity in cases traditionally expected to be negative, such as medulloblastoma and ependymoma, introduce an additional layer of complexity. Together, these findings highlight the challenges of relying solely on OLIG2 immunostaining for accurate tumor classification in pediatric CNS neoplasms and underscore the importance of an integrated diagnostic approach.

3.
Nat Commun ; 15(1): 270, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38191555

RESUMEN

Many genes that drive normal cellular development also contribute to oncogenesis. Medulloblastoma (MB) tumors likely arise from neuronal progenitors in the cerebellum, and we hypothesized that the heterogeneity observed in MBs with sonic hedgehog (SHH) activation could be due to differences in developmental pathways. To investigate this question, here we perform single-nucleus RNA sequencing on highly differentiated SHH MBs with extensively nodular histology and observed malignant cells resembling each stage of canonical granule neuron development. Through innovative computational approaches, we connect these results to published datasets and find that some established molecular subtypes of SHH MB appear arrested at different developmental stages. Additionally, using multiplexed proteomic imaging and MALDI imaging mass spectrometry, we identify distinct histological and metabolic profiles for highly differentiated tumors. Our approaches are applicable to understanding the interplay between heterogeneity and differentiation in other cancers and can provide important insights for the design of targeted therapies.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Humanos , Proteínas Hedgehog/genética , Meduloblastoma/genética , Proteómica , Cerebelo , Neoplasias Cerebelosas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA