Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Plant Physiol ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38857179

RESUMEN

Carbon concentrating mechanisms (CCMs) have evolved numerous times in photosynthetic organisms. They elevate the concentration of CO2 around the carbon-fixing enzyme rubisco, thereby increasing CO2 assimilatory flux and reducing photorespiration. Biophysical CCMs, like the pyrenoid-based CCM of Chlamydomonas reinhardtii or carboxysome systems of cyanobacteria, are common in aquatic photosynthetic microbes, but in land plants appear only among the hornworts. To predict the likely efficiency of biophysical CCMs in C3 plants, we used spatially resolved reaction-diffusion models to predict rubisco saturation and light use efficiency. We found that the energy efficiency of adding individual CCM components to a C3 land plant is highly dependent on the permeability of lipid membranes to CO2, with values in the range reported in the literature that are higher than used in previous modeling studies resulting in low light use efficiency. Adding a complete pyrenoid-based CCM into the leaf cells of a C3 land plant was predicted to boost net CO2 fixation, but at higher energetic costs than those incurred by photorespiratory losses without a CCM. Two notable exceptions were when substomatal CO2 levels are as low as those found in land plants that already employ biochemical CCMs and when gas exchange is limited, such as with hornworts, making the use of a biophysical CCM necessary to achieve net positive CO2 fixation under atmospheric CO2 levels. This provides an explanation for the uniqueness of hornworts' CCM among land plants and evolution of pyrenoids multiple times.

2.
Photosynth Res ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874662

RESUMEN

Balancing the ATP: NADPH demand from plant metabolism with supply from photosynthesis is essential for preventing photodamage and operating efficiently, so understanding its drivers is important for integrating metabolism with the light reactions of photosynthesis and for bioengineering efforts that may radically change this demand. It is often assumed that the C3 cycle and photorespiration consume the largest amount of ATP and reductant in illuminated leaves and as a result mostly determine the ATP: NADPH demand. However, the quantitative extent to which other energy consuming metabolic processes contribute in large ways to overall ATP: NADPH demand remains unknown. Here, we used the metabolic flux networks of numerous recently published isotopically non-stationary metabolic flux analyses (INST-MFA) to evaluate flux through the C3 cycle, photorespiration, the oxidative pentose phosphate pathway, the tricarboxylic acid cycle, and starch/sucrose synthesis and characterize broad trends in the demand of energy across different pathways and compartments as well as in the overall ATP:NADPH demand. These data sets include a variety of species including Arabidopsis thaliana, Nicotiana tabacum, and Camelina sativa as well as varying environmental factors including high/low light, day length, and photorespiratory levels. Examining these datasets in aggregate reveals that ultimately the bulk of the energy flux occurred in the C3 cycle and photorespiration, however, the energy demand from these pathways did not determine the ATP: NADPH demand alone. Instead, a notable contribution was revealed from starch and sucrose synthesis which might counterbalance photorespiratory demand and result in fewer adjustments in mechanisms which balance the ATP deficit.

3.
Plant Cell Environ ; 47(2): 416-428, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37937663

RESUMEN

Photorespiration consumes substantial amounts of energy in the forms of adenosine triphosphate (ATP) and reductant making the pathway an important component in leaf energetics. Because of this high reductant demand, photorespiration is proposed to act as a photoprotective electron sink. However, photorespiration consumes more ATP relative to reductant than the C3 cycle meaning increased flux disproportionally increases ATP demand relative to reductant. Here we explore how energetic consumption from photorespiration impacts the flexibility of the light reactions in nicotiana tabacum. Specifically, we demonstrate that decreased photosynthetic efficiency (ϕII ) at low photorespiratory flux was related to feedback regulation at the chloroplast ATP synthase. Additionally, decreased ϕII at high photorespiratory flux resulted in the accumulation of photoinhibition at photosystem II centers. These results are contrary to the proposed role of photorespiration as a photoprotective electron sink. Instead, our results suggest a novel role of ATP consumption from photorespiration in maintaining ATP synthase activity, with implications for maintaining energy balance and preventing photodamage that will be critical for plant engineering strategies.


Asunto(s)
Adenosina Trifosfato , Nicotiana , Adenosina Trifosfato/metabolismo , Sustancias Reductoras , Retroalimentación , Fotosíntesis/fisiología , Dióxido de Carbono/metabolismo
4.
Plant Cell Environ ; 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321805

RESUMEN

Gas exchange measurements enable mechanistic insights into the processes that underpin carbon and water fluxes in plant leaves which in turn inform understanding of related processes at a range of scales from individual cells to entire ecosytems. Given the importance of photosynthesis for the global climate discussion it is important to (a) foster a basic understanding of the fundamental principles underpinning the experimental methods used by the broad community, and (b) ensure best practice and correct data interpretation within the research community. In this review, we outline the biochemical and biophysical parameters of photosynthesis that can be investigated with gas exchange measurements and we provide step-by-step guidance on how to reliably measure them. We advise on best practices for using gas exchange equipment and highlight potential pitfalls in experimental design and data interpretation. The Supporting Information contains exemplary data sets, experimental protocols and data-modelling routines. This review is a community effort to equip both the experimental researcher and the data modeller with a solid understanding of the theoretical basis of gas-exchange measurements, the rationale behind different experimental protocols and the approaches to data interpretation.

5.
J Exp Bot ; 75(10): 2819-2828, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38366564

RESUMEN

The net CO2 assimilation (A) response to intercellular CO2 concentration (Ci) is a fundamental measurement in photosynthesis and plant physiology research. The conventional A/Ci protocols rely on steady-state measurements and take 15-40 min per measurement, limiting data resolution or biological replication. Additionally, there are several CO2 protocols employed across the literature, without clear consensus as to the optimal protocol or systematic biases in their estimations. We compared the non-steady-state Dynamic Assimilation Technique (DAT) protocol and the three most used CO2 protocols in steady-state measurements, and tested whether different CO2 protocols lead to systematic differences in estimations of the biochemical limitations to photosynthesis. The DAT protocol reduced the measurement time by almost half without compromising estimation accuracy or precision. The monotonic protocol was the fastest steady-state method. Estimations of biochemical limitations to photosynthesis were very consistent across all CO2 protocols, with slight differences in Rubisco carboxylation limitation. The A/Ci curves were not affected by the direction of the change of CO2 concentration but rather the time spent under triose phosphate utilization (TPU)-limited conditions. Our results suggest that the maximum rate of Rubisco carboxylation (Vcmax), linear electron flow for NADPH supply (J), and TPU measured using different protocols within the literature are comparable, or at least not systematically different based on the measurement protocol used.


Asunto(s)
Dióxido de Carbono , Fotosíntesis , Dióxido de Carbono/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo
6.
Plant Physiol ; 189(2): 874-888, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35201348

RESUMEN

Photosynthetic organisms possess a variety of mechanisms to achieve balance between absorbed light (source) and the capacity to metabolically utilize or dissipate this energy (sink). While regulatory processes that detect changes in metabolic status/balance are relatively well studied in plants, analogous pathways remain poorly characterized in photosynthetic microbes. Here, we explored systemic changes that result from alterations in carbon availability in the model cyanobacterium Synechococcus elongatus PCC 7942 by taking advantage of an engineered strain where influx/efflux of a central carbon metabolite, sucrose, can be regulated experimentally. We observed that induction of a high-flux sucrose export pathway leads to depletion of internal carbon storage pools (glycogen) and concurrent increases in estimates of photosynthetic activity. Further, a proteome-wide analysis and fluorescence reporter-based analysis revealed that upregulated factors following the activation of the metabolic sink are concentrated on ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) and auxiliary modules involved in Rubisco maturation. Carboxysome number and Rubisco activity also increased following engagement of sucrose secretion. Conversely, reversing the flux of sucrose by feeding exogenous sucrose through the heterologous transporter resulted in increased glycogen pools, decreased Rubisco abundance, and carboxysome reorganization. Our data suggest that Rubisco activity and organization are key variables connected to regulatory pathways involved in metabolic balancing in cyanobacteria.


Asunto(s)
Ribulosa-Bifosfato Carboxilasa , Synechococcus , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Glucógeno/metabolismo , Ribulosa-Bifosfato Carboxilasa/genética , Ribulosa-Bifosfato Carboxilasa/metabolismo , Sacarosa/metabolismo , Synechococcus/genética , Synechococcus/metabolismo
7.
Photosynth Res ; 156(2): 247-264, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36780115

RESUMEN

Cyanidioschyzon merolae is an extremophilic red microalga which grows in low-pH, high-temperature environments. The basis of C. merolae's environmental resilience is not fully characterized, including whether this alga uses a carbon-concentrating mechanism (CCM). To determine if C. merolae uses a CCM, we measured CO2 uptake parameters using an open-path infra-red gas analyzer and compared them to values expected in the absence of a CCM. These measurements and analysis indicated that C. merolae had the gas-exchange characteristics of a CCM-operating organism: low CO2 compensation point, high affinity for external CO2, and minimized rubisco oxygenation. The biomass δ13C of C. merolae was also consistent with a CCM. The apparent presence of a CCM in C. merolae suggests the use of an unusual mechanism for carbon concentration, as C. merolae is thought to lack a pyrenoid and gas-exchange measurements indicated that C. merolae primarily takes up inorganic carbon as carbon dioxide, rather than bicarbonate. We use homology to known CCM components to propose a model of a pH-gradient-based CCM, and we discuss how this CCM can be further investigated.


Asunto(s)
Extremófilos , Microalgas , Rhodophyta , Fotosíntesis , Dióxido de Carbono , Transporte Biológico
8.
Plant Cell Environ ; 46(12): 3704-3720, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37667571

RESUMEN

Increase photorespiration and optimising intrinsic water use efficiency are unique challenges to photosynthetic carbon fixation at elevated temperatures. To determine how plants can adapt to facilitate high rates of photorespiration at elevated temperatures while also maintaining water-use efficiency, we performed in-depth gas exchange and biochemical assays of the C3 extremophile, Rhazya stricta. These results demonstrate that R. stricta supports higher rates of photorespiration under elevated temperatures and that these higher rates of photorespiration correlate with increased activity of key photorespiratory enzymes; phosphoglycolate phosphatase and catalase. The increased photorespiratory enzyme activities may increase the overall capacity of photorespiration by reducing enzymatic bottlenecks and allowing minimal inhibitor accumulation under high photorespiratory rates. Additionally, we found the CO2 transfer conductances (stomatal and mesophyll) are re-allocated to increase the water-use efficiency in R. stricta but not necessarily the photosynthetic response to temperature. These results suggest important adaptive strategies in R. stricta that maintain photosynthetic rates under elevated temperatures with optimal water loss. The strategies found in R. stricta may inform breeding and engineering efforts in other C3 species to improve photosynthetic efficiency at high temperatures.


Asunto(s)
Apocynaceae , Extremófilos , Temperatura , Dióxido de Carbono/farmacología , Fotosíntesis/fisiología , Agua
9.
J Exp Bot ; 74(2): 600-611, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35962786

RESUMEN

Photorespiration is a dynamic process that is intimately linked to photosynthetic carbon assimilation. There is a growing interest in understanding carbon assimilation during dynamic conditions, but the role of photorespiration under such conditions is unclear. In this review, we discuss recent work relevant to the function of photorespiration under dynamic conditions, with a special focus on light transients. This work reveals that photorespiration is a fundamental component of the light induction of assimilation where variable diffusive processes limit CO2 exchange with the atmosphere. Additionally, metabolic interactions between photorespiration and the C3 cycle may help balance fluxes under dynamic light conditions. We further discuss how the energy demands of photorespiration present special challenges to energy balancing during dynamic conditions. We finish the review with an overview of why regulation of photorespiration may be important under dynamic conditions to maintain appropriate fluxes through metabolic pathways related to photorespiration such as nitrogen and one-carbon metabolism.


Asunto(s)
Redes y Vías Metabólicas , Fotosíntesis , Fotosíntesis/fisiología , Metabolismo Energético , Carbono/metabolismo , Luz , Dióxido de Carbono/metabolismo
10.
Plant Cell Environ ; 44(7): 2290-2307, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33555066

RESUMEN

We explored the effects, on photosynthesis in cowpea (Vigna unguiculata) seedlings, of high temperature and light-environmental stresses that often co-occur under field conditions and can have greater impact on photosynthesis than either by itself. We observed contrasting responses in the light and carbon assimilatory reactions, whereby in high temperature, the light reactions were stimulated while CO2 assimilation was substantially reduced. There were two striking observations. Firstly, the primary quinone acceptor (QA ), a measure of the regulatory balance of the light reactions, became more oxidized with increasing temperature, suggesting increased electron sink capacity, despite the reduced CO2 fixation. Secondly, a strong, O2 -dependent inactivation of assimilation capacity, consistent with down-regulation of rubisco under these conditions. The dependence of these effects on CO2 , O2 and light led us to conclude that both photorespiration and an alternative electron acceptor supported increased electron flow, and thus provided photoprotection under these conditions. Further experiments showed that the increased electron flow was maintained by rapid rates of PSII repair, particularly at combined high light and temperature. Overall, the results suggest that photodamage to the light reactions can be avoided under high light and temperatures by increasing electron sink strength, even when assimilation is strongly suppressed.


Asunto(s)
Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema II/metabolismo , Vigna/fisiología , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Metabolismo Energético , Fluorescencia , Luz , Lincomicina/farmacología , Procesos Fotoquímicos , Temperatura , Vigna/efectos de los fármacos
11.
J Exp Bot ; 72(1): 137-152, 2021 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-32710115

RESUMEN

The chloroplastic 2-oxaloacetate (OAA)/malate transporter (OMT1 or DiT1) takes part in the malate valve that protects chloroplasts from excessive redox poise through export of malate and import of OAA. Together with the glutamate/malate transporter (DCT1 or DiT2), it connects carbon with nitrogen assimilation, by providing 2-oxoglutarate for the GS/GOGAT (glutamine synthetase/glutamate synthase) reaction and exporting glutamate to the cytoplasm. OMT1 further plays a prominent role in C4 photosynthesis: OAA resulting from phosphoenolpyruvate carboxylation is imported into the chloroplast, reduced to malate by plastidic NADP-malate dehydrogenase, and then exported for transport to bundle sheath cells. Both transport steps are catalyzed by OMT1, at the rate of net carbon assimilation. To engineer C4 photosynthesis into C3 crops, OMT1 must be expressed in high amounts on top of core C4 metabolic enzymes. We report here high-level expression of ZmOMT1 from maize in rice (Oryza sativa ssp. indica IR64). Increased activity of the transporter in transgenic rice was confirmed by reconstitution of transporter activity into proteoliposomes. Unexpectedly, overexpression of ZmOMT1 in rice negatively affected growth, CO2 assimilation rate, total free amino acid content, tricarboxylic acid cycle metabolites, as well as sucrose and starch contents. Accumulation of high amounts of aspartate and the impaired growth phenotype of OMT1 rice lines could be suppressed by simultaneous overexpression of ZmDiT2. Implications for engineering C4 rice are discussed.


Asunto(s)
Oryza , Carbono/metabolismo , Cloroplastos/metabolismo , Homeostasis , Ácidos Cetoglutáricos/metabolismo , Malatos/metabolismo , Nitrógeno/metabolismo , Oryza/genética , Fotosíntesis
12.
Plant Cell ; 29(4): 808-823, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28351992

RESUMEN

Photorespiration is an energy-intensive process that recycles 2-phosphoglycolate, a toxic product of the Rubisco oxygenation reaction. The photorespiratory pathway is highly compartmentalized, involving the chloroplast, peroxisome, cytosol, and mitochondria. Though the soluble enzymes involved in photorespiration are well characterized, very few membrane transporters involved in photorespiration have been identified to date. In this work, Arabidopsis thaliana plants containing a T-DNA disruption of the bile acid sodium symporter BASS6 show decreased photosynthesis and slower growth under ambient, but not elevated CO2 Exogenous expression of BASS6 complemented this photorespiration mutant phenotype. In addition, metabolite analysis and genetic complementation of glycolate transport in yeast showed that BASS6 was capable of glycolate transport. This is consistent with its involvement in the photorespiratory export of glycolate from Arabidopsis chloroplasts. An Arabidopsis double knockout line of both BASS6 and the glycolate/glycerate transporter PLGG1 (bass6, plgg1) showed an additive growth defect, an increase in glycolate accumulation, and reductions in photosynthetic rates compared with either single mutant. Our data indicate that BASS6 and PLGG1 partner in glycolate export from the chloroplast, whereas PLGG1 alone accounts for the import of glycerate. BASS6 and PLGG1 therefore balance the export of two glycolate molecules with the import of one glycerate molecule during photorespiration.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Glicolatos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Dióxido de Carbono/metabolismo , Mutación , Fotosíntesis/genética , Fotosíntesis/fisiología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
13.
Plant Physiol ; 178(2): 565-582, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30104256

RESUMEN

The evolution of C4 photosynthesis led to an increase in carbon assimilation rates and plant growth compared to C3 photosynthetic plants. This enhanced plant growth, in turn, affects the requirement for soil-derived mineral nutrients. However, mineral plant nutrition has scarcely been considered in connection with C4 photosynthesis. Sulfur is crucial for plant growth and development, and preliminary studies in the genus Flaveria suggested metabolic differences in sulfate assimilation along the C4 evolutionary trajectory. Here, we show that in controlled conditions, foliar accumulation of the reduced sulfur compounds Cys and glutathione (GSH) increased with progressing establishment of the C4 photosynthetic cycle in different Flaveria species. An enhanced demand for reduced sulfur in C4 Flaveria species is reflected in high rates of [35S]sulfate incorporation into GSH upon sulfate deprivation and increased GSH turnover as a reaction to the inhibition of GSH synthesis. Expression analyses indicate that the γ-glutamyl cycle is crucial for the recycling of GSH in C4 species. Sulfate reduction and GSH synthesis seems to be preferentially localized in the roots of C4 species, which might be linked to its colocalization with the phosphorylated pathway of Ser biosynthesis. Interspecies grafting experiments of F. robusta (C3) and F. bidentis (C4) revealed that the root system primarily controls sulfate acquisition, GSH synthesis, and sulfate and metabolite allocation in C3 and C4 plants. This study thus shows that evolution of C4 photosynthesis resulted in a wide range of adaptations of sulfur metabolism and points out the need for broader studies on importance of mineral nutrition for C4 plants.


Asunto(s)
Carbono/metabolismo , Flaveria/metabolismo , Raíces de Plantas/metabolismo , Serina/metabolismo , Sulfatos/metabolismo , Ciclo del Carbono , Fotosíntesis
14.
Plant Physiol ; 176(1): 757-772, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29127261

RESUMEN

The coordinated positioning of veins, mesophyll cells, and stomata across a leaf is crucial for efficient gas exchange and transpiration and, therefore, for overall function. In monocot leaves, stomatal cell files are positioned at the flanks of underlying longitudinal leaf veins, rather than directly above or below. This pattern suggests either that stomatal formation is inhibited in epidermal cells directly in contact with the vein or that specification is induced in cell files beyond the vein. The SHORTROOT pathway specifies distinct cell types around the vasculature in subepidermal layers of both root and shoots, with cell type identity determined by distance from the vein. To test whether the pathway has the potential to similarly pattern epidermal cell types, we expanded the expression domain of the rice (Oryza sativa ssp japonica) OsSHR2 gene, which we show is restricted to developing leaf veins, to include bundle sheath cells encircling the vein. In transgenic lines, which were generated using the orthologous ZmSHR1 gene to avoid potential silencing of OsSHR2, stomatal cell files were observed both in the normal position and in more distant positions from the vein. Contrary to theoretical predictions, and to phenotypes observed in eudicot leaves, the increase in stomatal density did not enhance photosynthetic capacity or increase mesophyll cell density. Collectively, these results suggest that the SHORTROOT pathway may coordinate the positioning of veins and stomata in monocot leaves and that distinct mechanisms may operate in monocot and eudicot leaves to coordinate stomatal patterning with the development of underlying mesophyll cells.


Asunto(s)
Fotosíntesis , Estomas de Plantas/fisiología , Tamaño de la Célula , Regulación de la Expresión Génica de las Plantas , Genes Duplicados , Genes de Plantas , Células del Mesófilo/citología , Oryza/genética , Oryza/fisiología , Filogenia , Raíces de Plantas/genética , Estomas de Plantas/anatomía & histología , Estomas de Plantas/genética , Plantas Modificadas Genéticamente , ARN Mensajero/genética , ARN Mensajero/metabolismo , Plantones/crecimiento & desarrollo , Zea mays/metabolismo
15.
Plant Physiol ; 176(2): 990-1003, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29192028

RESUMEN

Rapidly changing light conditions can reduce carbon gain and productivity in field crops because photosynthetic responses to light fluctuations are not instantaneous. Plant responses to fluctuating light occur across levels of organizational complexity from entire canopies to the biochemistry of a single reaction and across orders of magnitude of time. Although light availability and variation at the top of the canopy are largely dependent on the solar angle and degree of cloudiness, lower crop canopies rely more heavily on light in the form of sunflecks, the quantity of which depends mostly on canopy structure but also may be affected by wind. The ability of leaf photosynthesis to respond rapidly to these variations in light intensity is restricted by the relatively slow opening/closing of stomata, activation/deactivation of C3 cycle enzymes, and up-regulation/down-regulation of photoprotective processes. The metabolic complexity of C4 photosynthesis creates the apparently contradictory possibilities that C4 photosynthesis may be both more and less resilient than C3 to dynamic light regimes, depending on the frequency at which these light fluctuations occur. We review the current understanding of the underlying mechanisms of these limitations to photosynthesis in fluctuating light that have shown promise in improving the response times of photosynthesis-related processes to changes in light intensity.


Asunto(s)
Carbono/metabolismo , Luz , Fotosíntesis/efectos de la radiación , Hojas de la Planta/efectos de la radiación , Plantas/efectos de la radiación , Productos Agrícolas/metabolismo , Productos Agrícolas/efectos de la radiación , Redes y Vías Metabólicas/efectos de la radiación , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Estomas de Plantas/metabolismo , Estomas de Plantas/fisiología , Estomas de Plantas/efectos de la radiación , Plantas/clasificación , Plantas/metabolismo
16.
Plant Physiol ; 176(2): 1215-1232, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29061904

RESUMEN

The hypothesis that reducing chlorophyll content (Chl) can increase canopy photosynthesis in soybeans was tested using an advanced model of canopy photosynthesis. The relationship among leaf Chl, leaf optical properties, and photosynthetic biochemical capacity was measured in 67 soybean (Glycine max) accessions showing large variation in leaf Chl. These relationships were integrated into a biophysical model of canopy-scale photosynthesis to simulate the intercanopy light environment and carbon assimilation capacity of canopies with wild type, a Chl-deficient mutant (Y11y11), and 67 other mutants spanning the extremes of Chl to quantify the impact of variation in leaf-level Chl on canopy-scale photosynthetic assimilation and identify possible opportunities for improving canopy photosynthesis through Chl reduction. These simulations demonstrate that canopy photosynthesis should not increase with Chl reduction due to increases in leaf reflectance and nonoptimal distribution of canopy nitrogen. However, similar rates of canopy photosynthesis can be maintained with a 9% savings in leaf nitrogen resulting from decreased Chl. Additionally, analysis of these simulations indicate that the inability of Chl reductions to increase photosynthesis arises primarily from the connection between Chl and leaf reflectance and secondarily from the mismatch between the vertical distribution of leaf nitrogen and the light absorption profile. These simulations suggest that future work should explore the possibility of using reduced Chl to improve canopy performance by adapting the distribution of the "saved" nitrogen within the canopy to take greater advantage of the more deeply penetrating light.


Asunto(s)
Clorofila/metabolismo , Glycine max/fisiología , Fotosíntesis/fisiología , Simulación por Computador , Modelos Biológicos , Nitrógeno/metabolismo , Hojas de la Planta/fisiología , Glycine max/genética
18.
Plant J ; 87(6): 664-80, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27258321

RESUMEN

The group of homoiochlorophyllous resurrection plants evolved the unique capability to survive severe drought stress without dismantling the photosynthetic machinery. This implies that they developed efficient strategies to protect the leaves from reactive oxygen species (ROS) generated by photosynthetic side reactions. These strategies, however, are poorly understood. Here, we performed a detailed study of the photosynthetic machinery in the homoiochlorophyllous resurrection plant Craterostigma pumilum during dehydration and upon recovery from desiccation. During dehydration and rehydration, C. pumilum deactivates and activates partial components of the photosynthetic machinery in a specific order, allowing for coordinated shutdown and subsequent reinstatement of photosynthesis. Early responses to dehydration are the closure of stomata and activation of electron transfer to oxygen accompanied by inactivation of the cytochrome b6 f complex leading to attenuation of the photosynthetic linear electron flux (LEF). The decline in LEF is paralleled by a gradual increase in cyclic electron transport to maintain ATP production. At low water contents, inactivation and supramolecular reorganization of photosystem II becomes apparent, accompanied by functional detachment of light-harvesting complexes and interrupted access to plastoquinone. This well-ordered sequence of alterations in the photosynthetic thylakoid membranes helps prepare the plant for the desiccated state and minimize ROS production.


Asunto(s)
Craterostigma/fisiología , Fotosíntesis/fisiología , Dióxido de Carbono/metabolismo , Complejo de Citocromo b6f/metabolismo , Deshidratación , Transporte de Electrón , Complejo de Proteína del Fotosistema II/metabolismo , Estomas de Plantas/fisiología , Tilacoides/metabolismo
19.
Photosynth Res ; 132(3): 245-255, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28382593

RESUMEN

Rates of carbon dioxide assimilation through photosynthesis are readily modeled using the Farquhar, von Caemmerer, and Berry (FvCB) model based on the biochemistry of the initial Rubisco-catalyzed reaction of net C3 photosynthesis. As models of CO2 assimilation rate are used more broadly for simulating photosynthesis among species and across scales, it is increasingly important that their temperature dependencies are accurately parameterized. A vital component of the FvCB model, the photorespiratory CO2 compensation point (Γ *), combines the biochemistry of Rubisco with the stoichiometry of photorespiratory release of CO2. This report details a comparison of the temperature response of Γ * measured using different techniques in three important model and crop species (Nicotiana tabacum, Triticum aestivum, and Glycine max). We determined that the different Γ * determination methods produce different temperature responses in the same species that are large enough to impact higher-scale leaf models of CO2 assimilation rate. These differences are largest in N. tabacum and could be the result of temperature-dependent increases in the amount of CO2 lost from photorespiration per Rubisco oxygenation reaction.


Asunto(s)
Dióxido de Carbono/metabolismo , Fotosíntesis/fisiología , Respiración de la Célula/fisiología , Hojas de la Planta/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Temperatura
20.
Photosynth Res ; 129(1): 93-103, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27251551

RESUMEN

Photorespiration recycles fixed carbon following the oxygenation reaction of Ribulose, 1-5, carboxylase oxygenase (Rubisco). The recycling of photorespiratory C2 to C3 intermediates is not perfectly efficient and reduces photosynthesis in C3 plants. Recently, a plastidic glycolate/glycerate transporter (PLGG1) in photorespiration was identified in Arabidopsis thaliana, but it is not known how critical this transporter is for maintaining photorespiratory efficiency. We examined a mutant deficient in PLGG1 (plgg1-1) using modeling, gas exchange, and Rubisco biochemistry. Under low light (under 65 µmol m(-2) s(-1) PAR), there was no difference in the quantum efficiency of CO2 assimilation or in the photorespiratory CO2 compensation point of plgg1-1, indicating that photorespiration proceeded with wild-type efficiency under sub-saturating light irradiances. Under saturating light irradiance (1200 µmol m(-2) s(-1) PAR), plgg1-1 showed decreased CO2 assimilation that was explained by decreases in the maximum rate of Rubisco carboxylation and photosynthetic linear electron transport. Decreased rates of Rubisco carboxylation resulted from probable decreases in the Rubisco activation state. These results suggest that glycolate/glycerate transport during photorespiration can proceed in moderate rates through an alternative transport process with wild-type efficiencies. These findings also suggest that decreases in net CO2 assimilation that occur due to disruption to photorespiration can occur by decreases in Rubisco activity and not necessarily decreases in the recycling efficiency of photorespiration.


Asunto(s)
Arabidopsis/fisiología , Dióxido de Carbono/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/metabolismo , Carbono/metabolismo , Transporte de Electrón , Glicolatos/metabolismo , Luz , Proteínas de Transporte de Membrana/genética , Mutación , Oxígeno/metabolismo , Fotosíntesis , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Transpiración de Plantas , Plastidios/metabolismo , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA