Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Genome Biol ; 25(1): 11, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38191487

RESUMEN

BACKGROUND: Transcription factors bind DNA in specific sequence contexts. In addition to distinguishing one nucleobase from another, some transcription factors can distinguish between unmodified and modified bases. Current models of transcription factor binding tend not to take DNA modifications into account, while the recent few that do often have limitations. This makes a comprehensive and accurate profiling of transcription factor affinities difficult. RESULTS: Here, we develop methods to identify transcription factor binding sites in modified DNA. Our models expand the standard A/C/G/T DNA alphabet to include cytosine modifications. We develop Cytomod to create modified genomic sequences and we also enhance the MEME Suite, adding the capacity to handle custom alphabets. We adapt the well-established position weight matrix (PWM) model of transcription factor binding affinity to this expanded DNA alphabet. Using these methods, we identify modification-sensitive transcription factor binding motifs. We confirm established binding preferences, such as the preference of ZFP57 and C/EBPß for methylated motifs and the preference of c-Myc for unmethylated E-box motifs. CONCLUSIONS: Using known binding preferences to tune model parameters, we discover novel modified motifs for a wide array of transcription factors. Finally, we validate our binding preference predictions for OCT4 using cleavage under targets and release using nuclease (CUT&RUN) experiments across conventional, methylation-, and hydroxymethylation-enriched sequences. Our approach readily extends to other DNA modifications. As more genome-wide single-base resolution modification data becomes available, we expect that our method will yield insights into altered transcription factor binding affinities across many different modifications.


Asunto(s)
Regulación de la Expresión Génica , Factores de Transcripción , Epigenómica , ADN , Epigénesis Genética
2.
Nat Biotechnol ; 41(10): 1457-1464, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36747096

RESUMEN

DNA comprises molecular information stored in genetic and epigenetic bases, both of which are vital to our understanding of biology. Most DNA sequencing approaches address either genetics or epigenetics and thus capture incomplete information. Methods widely used to detect epigenetic DNA bases fail to capture common C-to-T mutations or distinguish 5-methylcytosine from 5-hydroxymethylcytosine. We present a single base-resolution sequencing methodology that sequences complete genetics and the two most common cytosine modifications in a single workflow. DNA is copied and bases are enzymatically converted. Coupled decoding of bases across the original and copy strand provides a phased digital readout. Methods are demonstrated on human genomic DNA and cell-free DNA from a blood sample of a patient with cancer. The approach is accurate, requires low DNA input and has a simple workflow and analysis pipeline. Simultaneous, phased reading of genetic and epigenetic bases provides a more complete picture of the information stored in genomes and has applications throughout biomedicine.

3.
Sci Rep ; 12(1): 16566, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36195648

RESUMEN

Early detection of cancer will improve survival rates. The blood biomarker 5-hydroxymethylcytosine has been shown to discriminate cancer. In a large covariate-controlled study of over two thousand individual blood samples, we created, tested and explored the properties of a 5-hydroxymethylcytosine-based classifier to detect colorectal cancer (CRC). In an independent validation sample set, the classifier discriminated CRC samples from controls with an area under the receiver operating characteristic curve (AUC) of 90% (95% CI [87, 93]). Sensitivity was 55% at 95% specificity. Performance was similar for early stage 1 (AUC 89%; 95% CI [83, 94]) and late stage 4 CRC (AUC 94%; 95% CI [89, 98]). The classifier could detect CRC even when the proportion of tumor DNA in blood was undetectable by other methods. Expanding the classifier to include information about cell-free DNA fragment size and abundance across the genome led to gains in sensitivity (63% at 95% specificity), with similar overall performance (AUC 91%; 95% CI [89, 94]). We confirm that 5-hydroxymethylcytosine can be used to detect CRC, even in early-stage disease. Therefore, the inclusion of 5-hydroxymethylcytosine in multianalyte testing could improve sensitivity for the detection of early-stage cancer.


Asunto(s)
Ácidos Nucleicos Libres de Células , Neoplasias Colorrectales , Biomarcadores de Tumor/genética , Ácidos Nucleicos Libres de Células/genética , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , ADN/genética , Detección Precoz del Cáncer/métodos , Humanos , Sensibilidad y Especificidad
4.
Nat Genet ; 50(11): 1542-1552, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30349119

RESUMEN

Imprinting is the preferential expression of one parental allele over the other. It is controlled primarily through differential methylation of cytosine at CpG dinucleotides. Here we combine 285 methylomes and 11,617 transcriptomes from peripheral blood samples with parent-of-origin phased haplotypes, to produce a new map of imprinted methylation and gene expression patterns across the human genome. We demonstrate how imprinted methylation is a continuous rather than a binary characteristic. We describe at high resolution the parent-of-origin methylation pattern at the 15q11.2 Prader-Willi/Angelman syndrome locus, with nearly confluent stochastic paternal methylation punctuated by 'spikes' of maternal methylation. We find examples of polymorphic imprinted methylation unrelated (at VTRNA2-1 and PARD6G) or related (at CHRNE) to nearby SNP genotypes. We observe RNA isoform-specific imprinted expression patterns suggestive of a methylation-sensitive transcriptional elongation block. Finally, we gain new insights into parent-of-origin-specific effects on phenotypes at the DLK1/MEG3 and GNAS loci.


Asunto(s)
Metilación de ADN/genética , Genoma Humano , Impresión Genómica/fisiología , Patrón de Herencia/genética , Padres , Transcriptoma/genética , Síndrome de Angelman/genética , Estudios de Casos y Controles , Cromosomas Humanos Par 15 , Estudios de Cohortes , Islas de CpG/genética , Femenino , Sitios Genéticos , Humanos , Islandia , Masculino , Polimorfismo de Nucleótido Simple , Síndrome de Prader-Willi/genética , Sitios de Carácter Cuantitativo/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA