Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Bioinformatics ; 39(11)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37889279

RESUMEN

SUMMARY: The analysis of stable isotope labeling experiments requires accurate, efficient, and reproducible quantification of mass isotopomer distributions (MIDs), which is not a core feature of general-purpose metabolomics software tools that are optimized to quantify metabolite abundance. Here, we present PIRAMID (Program for Integration and Rapid Analysis of Mass Isotopomer Distributions), a MATLAB-based tool that addresses this need by offering a user-friendly, graphical user interface-driven program to automate the extraction of isotopic information from mass spectrometry (MS) datasets. This tool can simultaneously extract ion chromatograms for various metabolites from multiple data files in common vendor-agnostic file formats, locate chromatographic peaks based on a targeted list of characteristic ions and retention times, and integrate MIDs for each target ion. These MIDs can be corrected for natural isotopic background based on the user-defined molecular formula of each ion. PIRAMID offers support for datasets acquired from low- or high-resolution MS, and single (MS) or tandem (MS/MS) instruments. It also enables the analysis of single or dual labeling experiments using a variety of isotopes (i.e. 2H, 13C, 15N, 18O, 34S). DATA AVAILABILITY AND IMPLEMENTATION: MATLAB p-code files are freely available for non-commercial use and can be downloaded from https://mfa.vueinnovations.com/. Commercial licenses are also available. All the data presented in this publication are available under the "Help_menu" folder of the PIRAMID software.


Asunto(s)
Programas Informáticos , Espectrometría de Masas en Tándem , Isótopos de Oxígeno , Metabolómica/métodos
2.
Am J Physiol Endocrinol Metab ; 309(2): E191-203, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25991647

RESUMEN

Mouse models designed to examine hepatic metabolism are critical to diabetes and obesity research. Thus, a microscale method to quantitatively assess hepatic glucose and intermediary metabolism in conscious, unrestrained mice was developed. [(13)C3]propionate, [(2)H2]water, and [6,6-(2)H2]glucose isotopes were delivered intravenously in short- (9 h) and long-term-fasted (19 h) C57BL/6J mice. GC-MS and mass isotopomer distribution (MID) analysis were performed on three 40-µl arterial plasma glucose samples obtained during the euglycemic isotopic steady state. Model-based regression of hepatic glucose and citric acid cycle (CAC)-related fluxes was performed using a comprehensive isotopomer model to track carbon and hydrogen atom transitions through the network and thereby simulate the MIDs of measured fragment ions. Glucose-6-phosphate production from glycogen diminished, and endogenous glucose production was exclusively gluconeogenic with prolonged fasting. Gluconeogenic flux from phosphoenolpyruvate (PEP) remained stable, whereas that from glycerol modestly increased from short- to long-term fasting. CAC flux [i.e., citrate synthase (VCS)] was reduced with long-term fasting. Interestingly, anaplerosis and cataplerosis increased with fast duration; accordingly, pyruvate carboxylation and the conversion of oxaloacetate to PEP were severalfold higher than VCS in long-term fasted mice. This method utilizes state-of-the-art in vivo methodology and comprehensive isotopomer modeling to quantify hepatic glucose and intermediary fluxes during physiological stress in mice. The small plasma requirements permit serial sampling without stress and the affirmation of steady-state glucose kinetics. Furthermore, the approach can accommodate a broad range of modeling assumptions, isotope tracers, and measurement inputs without the need to introduce ad hoc mathematical approximations.


Asunto(s)
Glucemia/metabolismo , Deuterio/farmacocinética , Cromatografía de Gases y Espectrometría de Masas/métodos , Marcaje Isotópico/métodos , Hígado/metabolismo , Animales , Transporte Biológico , Glucemia/química , Isótopos de Carbono/análisis , Isótopos de Carbono/farmacocinética , Ciclo del Ácido Cítrico/fisiología , Deuterio/análisis , Glucosa/metabolismo , Glucógeno Hepático/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL
3.
bioRxiv ; 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38562832

RESUMEN

Genome-wide association studies (GWAS) and expression analyses implicate noncoding regulatory regions as harboring risk factors for psychiatric disease, but functional characterization of these regions remains limited. We performed capture STARR-sequencing of over 78,000 candidate regions to identify active enhancers in primary human neural progenitor cells (phNPCs). We selected candidate regions by integrating data from NPCs, prefrontal cortex, developmental timepoints, and GWAS. Over 8,000 regions demonstrated enhancer activity in the phNPCs, and we linked these regions to over 2,200 predicted target genes. These genes are involved in neuronal and psychiatric disease-associated pathways, including dopaminergic synapse, axon guidance, and schizophrenia. We functionally validated a subset of these enhancers using mutation STARR-sequencing and CRISPR deletions, demonstrating the effects of genetic variation on enhancer activity and enhancer deletion on gene expression. Overall, we identified thousands of highly active enhancers and functionally validated a subset of these enhancers, improving our understanding of regulatory networks underlying brain function and disease.

4.
bioRxiv ; 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38293065

RESUMEN

A catalog of transcription factor (TF) binding sites in the genome is critical for deciphering regulatory relationships. Here we present the culmination of the modERN (model organism Encyclopedia of Regulatory Networks) consortium that systematically assayed TF binding events in vivo in two major model organisms, Drosophila melanogaster (fly) and Caenorhabditis elegans (worm). We describe key features of these datasets, comprising 604 TFs identifying 3.6M sites in the fly and 350 TFs identifying 0.9 M sites in the worm. Applying a machine learning model to these data identifies sets of TFs with a prominent role in promoting target gene expression in specific cell types. TF binding data are available through the ENCODE Data Coordinating Center and at https://epic.gs.washington.edu/modERNresource, which provides access to processed and summary data, as well as widgets to probe cell type-specific TF-target relationships. These data are a rich resource that should fuel investigations into TF function during development.

5.
Genome Biol ; 21(1): 298, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33292397

RESUMEN

STARR-seq technology has employed progressively more complex genomic libraries and increased sequencing depths. An issue with the increased complexity and depth is that the coverage in STARR-seq experiments is non-uniform, overdispersed, and often confounded by sequencing biases, such as GC content. Furthermore, STARR-seq readout is confounded by RNA secondary structure and thermodynamic stability. To address these potential confounders, we developed a negative binomial regression framework for uniformly processing STARR-seq data, called STARRPeaker. Moreover, to aid our effort, we generated whole-genome STARR-seq data from the HepG2 and K562 human cell lines and applied STARRPeaker to comprehensively and unbiasedly call enhancers in them.


Asunto(s)
Análisis de Secuencia de ADN/métodos , Programas Informáticos , Elementos de Facilitación Genéticos , Biblioteca Genómica , Células Hep G2 , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Células K562 , Masculino , Regiones Promotoras Genéticas
6.
J Mol Endocrinol ; 64(4): 235-248, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32213654

RESUMEN

The G6PC1, G6PC2 and G6PC3 genes encode distinct glucose-6-phosphatase catalytic subunit (G6PC) isoforms. In mice, germline deletion of G6pc2 lowers fasting blood glucose (FBG) without affecting fasting plasma insulin (FPI) while, in isolated islets, glucose-6-phosphatase activity and glucose cycling are abolished and glucose-stimulated insulin secretion (GSIS) is enhanced at submaximal but not high glucose. These observations are all consistent with a model in which G6PC2 regulates the sensitivity of GSIS to glucose by opposing the action of glucokinase. G6PC2 is highly expressed in human and mouse islet beta cells however, various studies have shown trace G6PC2 expression in multiple tissues raising the possibility that G6PC2 also affects FBG through non-islet cell actions. Using real-time PCR we show here that expression of G6pc1 and/or G6pc3 are much greater than G6pc2 in peripheral tissues, whereas G6pc2 expression is much higher than G6pc3 in both pancreas and islets with G6pc1 expression not detected. In adult mice, beta cell-specific deletion of G6pc2 was sufficient to reduce FBG without changing FPI. In addition, electronic health record-derived phenotype analyses showed no association between G6PC2 expression and phenotypes clearly unrelated to islet function in humans. Finally, we show that germline G6pc2 deletion enhances glycolysis in mouse islets and that glucose cycling can also be detected in human islets. These observations are all consistent with a mechanism by which G6PC2 action in islets is sufficient to regulate the sensitivity of GSIS to glucose and hence influence FBG without affecting FPI.


Asunto(s)
Glucemia/metabolismo , Glucosa-6-Fosfatasa/genética , Células Secretoras de Insulina/metabolismo , Animales , Glucemia/genética , Células Cultivadas , Regulación hacia Abajo/genética , Ayuno/sangre , Eliminación de Gen , Mutación de Línea Germinal , Glucosa-6-Fosfatasa/metabolismo , Humanos , Islotes Pancreáticos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Especificidad de Órganos/genética
7.
Front Physiol ; 10: 161, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30881311

RESUMEN

The liver-a central metabolic organ that integrates whole-body metabolism to maintain glucose and fatty-acid regulation, and detoxify ammonia-is susceptible to injuries induced by drugs and toxic substances. Although plasma metabolite profiles are increasingly investigated for their potential to detect liver injury earlier than current clinical markers, their utility may be compromised because such profiles are affected by the nutritional state and the physiological state of the animal, and by contributions from extrahepatic sources. To tease apart the contributions of liver and non-liver sources to alterations in plasma metabolite profiles, here we sought to computationally isolate the plasma metabolite changes originating in the liver during short-term fasting. We used a constraint-based metabolic modeling approach to integrate central carbon fluxes measured in our study, and physiological flux boundary conditions gathered from the literature, into a genome-scale model of rat liver metabolism. We then measured plasma metabolite profiles in rats fasted for 5-7 or 10-13 h to test our model predictions. Our computational model accounted for two-thirds of the observed directions of change (an increase or decrease) in plasma metabolites, indicating their origin in the liver. Specifically, our work suggests that changes in plasma lipid metabolites, which are reliably predicted by our liver metabolism model, are key features of short-term fasting. Our approach provides a mechanistic model for identifying plasma metabolite changes originating in the liver.

8.
Sci Rep ; 8(1): 11678, 2018 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-30076366

RESUMEN

In order to provide timely treatment for organ damage initiated by therapeutic drugs or exposure to environmental toxicants, we first need to identify markers that provide an early diagnosis of potential adverse effects before permanent damage occurs. Specifically, the liver, as a primary organ prone to toxicants-induced injuries, lacks diagnostic markers that are specific and sensitive to the early onset of injury. Here, to identify plasma metabolites as markers of early toxicant-induced injury, we used a constraint-based modeling approach with a genome-scale network reconstruction of rat liver metabolism to incorporate perturbations of gene expression induced by acetaminophen, a known hepatotoxicant. A comparison of the model results against the global metabolic profiling data revealed that our approach satisfactorily predicted altered plasma metabolite levels as early as 5 h after exposure to 2 g/kg of acetaminophen, and that 10 h after treatment the predictions significantly improved when we integrated measured central carbon fluxes. Our approach is solely driven by gene expression and physiological boundary conditions, and does not rely on any toxicant-specific model component. As such, it provides a mechanistic model that serves as a first step in identifying a list of putative plasma metabolites that could change due to toxicant-induced perturbations.


Asunto(s)
Acetaminofén/toxicidad , Redes y Vías Metabólicas , Metaboloma , Animales , Animales de Laboratorio , Regulación de la Expresión Génica/efectos de los fármacos , Glucogenólisis/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/fisiología , Masculino , Análisis de Flujos Metabólicos , Redes y Vías Metabólicas/efectos de los fármacos , Redes y Vías Metabólicas/genética , Metaboloma/efectos de los fármacos , Metaboloma/genética , Piruvatos/metabolismo , Ratas Sprague-Dawley
9.
Genetics ; 208(3): 937-949, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29284660

RESUMEN

To develop a catalog of regulatory sites in two major model organisms, Drosophila melanogaster and Caenorhabditis elegans, the modERN (model organism Encyclopedia of Regulatory Networks) consortium has systematically assayed the binding sites of transcription factors (TFs). Combined with data produced by our predecessor, modENCODE (Model Organism ENCyclopedia Of DNA Elements), we now have data for 262 TFs identifying 1.23 M sites in the fly genome and 217 TFs identifying 0.67 M sites in the worm genome. Because sites from different TFs are often overlapping and tightly clustered, they fall into 91,011 and 59,150 regions in the fly and worm, respectively, and these binding sites span as little as 8.7 and 5.8 Mb in the two organisms. Clusters with large numbers of sites (so-called high occupancy target, or HOT regions) predominantly associate with broadly expressed genes, whereas clusters containing sites from just a few factors are associated with genes expressed in tissue-specific patterns. All of the strains expressing GFP-tagged TFs are available at the stock centers, and the chromatin immunoprecipitation sequencing data are available through the ENCODE Data Coordinating Center and also through a simple interface (http://epic.gs.washington.edu/modERN/) that facilitates rapid accessibility of processed data sets. These data will facilitate a vast number of scientific inquiries into the function of individual TFs in key developmental, metabolic, and defense and homeostatic regulatory pathways, as well as provide a broader perspective on how individual TFs work together in local networks and globally across the life spans of these two key model organisms.


Asunto(s)
Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Bases de Datos Genéticas , Drosophila/genética , Drosophila/metabolismo , Estudio de Asociación del Genoma Completo , Factores de Transcripción/metabolismo , Animales , Sitios de Unión , Inmunoprecipitación de Cromatina , Estudio de Asociación del Genoma Completo/métodos , Modelos Biológicos , Motivos de Nucleótidos , Unión Proteica
11.
Diabetes ; 64(6): 2129-37, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25552595

RESUMEN

A polymorphism located in the G6PC2 gene, which encodes an islet-specific glucose-6-phosphatase catalytic subunit, is the most important common determinant of variations in fasting blood glucose (FBG) levels in humans. Studies of G6pc2 knockout (KO) mice suggest that G6pc2 represents a negative regulator of basal glucose-stimulated insulin secretion (GSIS) that acts by hydrolyzing glucose-6-phosphate (G6P), thereby reducing glycolytic flux. However, this conclusion conflicts with the very low estimates for the rate of glucose cycling in pancreatic islets, as assessed using radioisotopes. We have reassessed the rate of glucose cycling in pancreatic islets using a novel stable isotope method. The data show much higher levels of glucose cycling than previously reported. In 5 mmol/L glucose, islets from C57BL/6J chow-fed mice cycled ∼16% of net glucose uptake. The cycling rate was further increased at 11 mmol/L glucose. Similar cycling rates were observed using islets from high fat-fed mice. Importantly, glucose cycling was abolished in G6pc2 KO mouse islets, confirming that G6pc2 opposes the action of the glucose sensor glucokinase by hydrolyzing G6P. The demonstration of high rates of glucose cycling in pancreatic islets explains why G6pc2 deletion enhances GSIS and why variants in G6PC2 affect FBG in humans.


Asunto(s)
Glucosa/metabolismo , Islotes Pancreáticos/metabolismo , Animales , Cromatografía de Gases y Espectrometría de Masas , Glucosa-6-Fosfatasa/genética , Glucosa-6-Fosfatasa/metabolismo , Técnicas In Vitro , Marcaje Isotópico , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA