Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Am Soc Nephrol ; 35(4): 398-409, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38254271

RESUMEN

SIGNIFICANCE STATEMENT: Autosomal dominant polycystic kidney disease (ADPKD) is a devastating disorder caused by mutations in polycystin 1 ( PKD1 ) and polycystin 2 ( PKD2 ). Currently, the mechanism for renal cyst formation remains unclear. Here, we provide convincing and conclusive data in mice demonstrating that Pkd2 deletion in embryonic Aqp2 + progenitor cells (AP), but not in neonate or adult Aqp2 + cells, is sufficient to cause severe polycystic kidney disease (PKD) with progressive loss of intercalated cells and complete elimination of α -intercalated cells, accurately recapitulating a newly identified cellular phenotype of patients with ADPKD. Hence, Pkd2 is a new potential regulator critical for balanced AP differentiation into, proliferation, and/or maintenance of various cell types, particularly α -intercalated cells. The Pkd2 conditional knockout mice developed in this study are valuable tools for further studies on collecting duct development and early steps in cyst formation. The finding that Pkd2 loss triggers the loss of intercalated cells is a suitable topic for further mechanistic studies. BACKGROUND: Most cases of autosomal dominant polycystic kidney disease (ADPKD) are caused by mutations in PKD1 or PKD2. Currently, the mechanism for renal cyst formation remains unclear. Aqp2 + progenitor cells (AP) (re)generate ≥5 cell types, including principal cells and intercalated cells in the late distal convoluted tubules (DCT2), connecting tubules, and collecting ducts. METHODS: Here, we tested whether Pkd2 deletion in AP and their derivatives at different developmental stages is sufficient to induce PKD. Aqp2Cre Pkd2f/f ( Pkd2AC ) mice were generated to disrupt Pkd2 in embryonic AP. Aqp2ECE/+Pkd2f/f ( Pkd2ECE ) mice were tamoxifen-inducted at P1 or P60 to inactivate Pkd2 in neonate or adult AP and their derivatives, respectively. All induced mice were sacrificed at P300. Immunofluorescence staining was performed to categorize and quantify cyst-lining cell types. Four other PKD mouse models and patients with ADPKD were similarly analyzed. RESULTS: Pkd2 was highly expressed in all connecting tubules/collecting duct cell types and weakly in all other tubular segments. Pkd2AC mice had obvious cysts by P6 and developed severe PKD and died by P17. The kidneys had reduced intercalated cells and increased transitional cells. Transitional cells were negative for principal cell and intercalated cell markers examined. A complete loss of α -intercalated cells occurred by P12. Cysts extended from the distal renal segments to DCT1 and possibly to the loop of Henle, but not to the proximal tubules. The induced Pkd2ECE mice developed mild PKD. Cystic α -intercalated cells were found in the other PKD models. AQP2 + cells were found in cysts of only 13/27 ADPKD samples, which had the same cellular phenotype as Pkd2AC mice. CONCLUSIONS: Hence, Pkd2 deletion in embryonic AP, but unlikely in neonate or adult Aqp2 + cells (principal cells and AP), was sufficient to cause severe PKD with progressive elimination of α -intercalated cells, recapitulating a newly identified cellular phenotype of patients with ADPKD. We proposed that Pkd2 is critical for balanced AP differentiation into, proliferation, and/or maintenance of cystic intercalated cells, particularly α -intercalated cells.


Asunto(s)
Acuaporina 2 , Riñón Poliquístico Autosómico Dominante , Adulto , Animales , Humanos , Ratones , Acuaporina 2/deficiencia , Acuaporina 2/genética , Quistes , Riñón/metabolismo , Ratones Noqueados , Enfermedades Renales Poliquísticas/genética , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/metabolismo , Insuficiencia Renal Crónica , Células Madre/metabolismo , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/metabolismo
2.
Am J Physiol Renal Physiol ; 324(6): F590-F602, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37141147

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the formation of numerous fluid-filled cysts that lead to progressive loss of functional nephrons. Currently, there is an unmet need for diagnostic and prognostic indicators of early stages of the disease. Metabolites were extracted from the urine of patients with early-stage ADPKD (n = 48 study participants) and age- and sex-matched normal controls (n = 47) and analyzed by liquid chromatography-mass spectrometry. Orthogonal partial least squares-discriminant analysis was used to generate a global metabolomic profile of early ADPKD for the identification of metabolic pathway alterations and discriminatory metabolites as candidates of diagnostic and prognostic biomarkers. The global metabolomic profile exhibited alterations in steroid hormone biosynthesis and metabolism, fatty acid metabolism, pyruvate metabolism, amino acid metabolism, and the urea cycle. A panel of 46 metabolite features was identified as candidate diagnostic biomarkers. Notable putative identities of candidate diagnostic biomarkers for early detection include creatinine, cAMP, deoxycytidine monophosphate, various androgens (testosterone; 5-α-androstane-3,17,dione; trans-dehydroandrosterone), betaine aldehyde, phosphoric acid, choline, 18-hydroxycorticosterone, and cortisol. Metabolic pathways associated with variable rates of disease progression included steroid hormone biosynthesis and metabolism, vitamin D3 metabolism, fatty acid metabolism, the pentose phosphate pathway, tricarboxylic acid cycle, amino acid metabolism, sialic acid metabolism, and chondroitin sulfate and heparin sulfate degradation. A panel of 41 metabolite features was identified as candidate prognostic biomarkers. Notable putative identities of candidate prognostic biomarkers include ethanolamine, C20:4 anandamide phosphate, progesterone, various androgens (5-α-dihydrotestosterone, androsterone, etiocholanolone, and epiandrosterone), betaine aldehyde, inflammatory lipids (eicosapentaenoic acid, linoleic acid, and stearolic acid), and choline. Our exploratory data support metabolic reprogramming in early ADPKD and demonstrate the ability of liquid chromatography-mass spectrometry-based global metabolomic profiling to detect metabolic pathway alterations as new therapeutic targets and biomarkers for early diagnosis and tracking disease progression of ADPKD.NEW & NOTEWORTHY To our knowledge, this study is the first to generate urinary global metabolomic profiles from individuals with early-stage ADPKD with preserved renal function for biomarker discovery. The exploratory dataset reveals metabolic pathway alterations that may be responsible for early cystogenesis and rapid disease progression and may be potential therapeutic targets and pathway sources for candidate biomarkers. From these results, we generated a panel of candidate diagnostic and prognostic biomarkers of early-stage ADPKD for future validation.


Asunto(s)
Riñón Poliquístico Autosómico Dominante , Humanos , Riñón Poliquístico Autosómico Dominante/diagnóstico , Andrógenos , Biomarcadores/orina , Metabolómica/métodos , Progresión de la Enfermedad , Redes y Vías Metabólicas , Colina , Aminoácidos , Ácidos Grasos , Esteroides
3.
Am J Physiol Renal Physiol ; 324(4): F423-F430, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36794756

RESUMEN

Measurement of total kidney volume (TKV) using magnetic resonance imaging (MRI) is a valuable approach for monitoring disease progression in autosomal dominant polycystic kidney disease (PKD) and is becoming more common in preclinical studies using animal models. Manual contouring of kidney MRI areas [i.e., manual method (MM)] is a conventional, but time-consuming, way to determine TKV. We developed a template-based semiautomatic image segmentation method (SAM) and validated it in three commonly used PKD models: Cys1cpk/cpk mice, Pkd1RC/RC mice, and Pkhd1pck/pck rats (n = 10 per model). We compared SAM-based TKV with that obtained by clinical alternatives including the ellipsoid formula-based method (EM) using three kidney dimensions, the longest kidney length method (LM), and MM, which is considered the gold standard. Both SAM and EM presented high accuracy in TKV assessment in Cys1cpk/cpk mice [interclass correlation coefficient (ICC) ≥ 0.94]. SAM was superior to EM and LM in Pkd1RC/RC mice (ICC = 0.87, 0.74, and <0.10 for SAM, EM, and LM, respectively) and Pkhd1pck/pck rats (ICC = 0.59, <0.10, and <0.10, respectively). Also, SAM outperformed EM in processing time in Cys1cpk/cpk mice (3.6 ± 0.6 vs. 4.4 ± 0.7 min/kidney) and Pkd1RC/RC mice (3.1 ± 0.4 vs. 7.1 ± 2.6 min/kidney, both P < 0.001) but not in Pkhd1PCK/PCK rats (3.7 ± 0.8 vs. 3.2 ± 0.5 min/kidney). LM was the fastest (∼1 min) but correlated most poorly with MM-based TKV in all studied models. Processing times by MM were longer for Cys1cpk/cpk mice, Pkd1RC/RC mice, and Pkhd1pck.pck rats (66.1 ± 7.3, 38.3 ± 7.5, and 29.2 ± 3.5 min). In summary, SAM is a fast and accurate method to determine TKV in mouse and rat PKD models.NEW & NOTEWORTHY Total kidney volume (TKV) is a valuable readout in preclinical studies for autosomal dominant and autosomal recessive polycystic kidney diseases (ADPKD and ARPKD). Since conventional TKV assessment by manual contouring of kidney areas in all images is time-consuming, we developed a template-based semiautomatic image segmentation method (SAM) and validated it in three commonly used ADPKD and ARPKD models. SAM-based TKV measurements were fast, highly reproducible, and accurate across mouse and rat ARPKD and ADPKD models.


Asunto(s)
Riñón Poliquístico Autosómico Dominante , Riñón Poliquístico Autosómico Recesivo , Ratas , Ratones , Animales , Riñón Poliquístico Autosómico Dominante/diagnóstico por imagen , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/patología , Roedores , Riñón/diagnóstico por imagen , Riñón/patología , Receptores de Superficie Celular
4.
Am J Physiol Renal Physiol ; 323(4): F492-F506, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35979967

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is a debilitating renal neoplastic disorder with limited treatment options. It is characterized by the formation of large fluid-filled cysts that develop from kidney tubules through abnormal cell proliferation and cyst-filling fluid secretion driven by cAMP-dependent Cl- secretion. We tested the effectiveness of the indazole carboxylic acid H2-gamendazole (H2-GMZ), a derivative of lonidamine, to inhibit these processes using in vitro and in vivo models of ADPKD. H2-GMZ was effective in rapidly blocking forskolin-induced, Cl--mediated short-circuit currents in human ADPKD cells, and it significantly inhibited both cAMP- and epidermal growth factor-induced proliferation of ADPKD cells. Western blot analysis of H2-GMZ-treated ADPKD cells showed decreased phosphorylated ERK and decreased hyperphosphorylated retinoblastoma levels. H2-GMZ treatment also decreased ErbB2, Akt, and cyclin-dependent kinase 4, consistent with inhibition of heat shock protein 90, and it decreased levels of the cystic fibrosis transmembrane conductance regulator Cl- channel protein. H2-GMZ-treated ADPKD cultures contained a higher proportion of smaller cells with fewer and smaller lamellipodia and decreased cytoplasmic actin staining, and they were unable to accomplish wound closure even at low H2-GMZ concentrations, consistent with an alteration in the actin cytoskeleton and decreased cell motility. Experiments using mouse metanephric organ cultures showed that H2-GMZ inhibited cAMP-stimulated cyst growth and enlargement. In vivo, H2-GMZ was effective in slowing postnatal cyst formation and kidney enlargement in the Pkd1flox/flox: Pkhd1-Cre mouse model. Thus, H2-GMZ treatment decreases Cl- secretion, cell proliferation, cell motility, and cyst growth. These properties, along with its reported low toxicity, suggest that H2-GMZ might be an attractive candidate for treatment of ADPKD.NEW & NOTEWORTHY Autosomal dominant polycystic kidney disease (ADPKD) is a renal neoplastic disorder characterized by the formation of large fluid-filled cysts that develop from kidney tubules through abnormal cell proliferation and cyst-filling fluid secretion driven by cAMP-dependent Cl- secretion. This study shows that the lonidamine derivative H2-GMZ inhibits Cl- secretion, cell proliferation, and cyst growth, suggesting that it might have therapeutic value for the treatment of ADPKD.


Asunto(s)
Quistes , Enfermedades Renales Poliquísticas , Riñón Poliquístico Autosómico Dominante , Actinas/metabolismo , Animales , Ácidos Carboxílicos/metabolismo , Proliferación Celular , Células Cultivadas , Colforsina/farmacología , Quinasa 4 Dependiente de la Ciclina/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Quistes/metabolismo , Familia de Proteínas EGF/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Indazoles/metabolismo , Indazoles/farmacología , Riñón/metabolismo , Ratones , Enfermedades Renales Poliquísticas/tratamiento farmacológico , Enfermedades Renales Poliquísticas/metabolismo , Riñón Poliquístico Autosómico Dominante/tratamiento farmacológico , Riñón Poliquístico Autosómico Dominante/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Superficie Celular
5.
Kidney Int ; 102(5): 1103-1114, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35760151

RESUMEN

Polycystic kidney disease (PKD) is characterized by the formation and progressive enlargement of fluid-filled cysts due to abnormal cell proliferation. Cyclic AMP agonists, including arginine vasopressin, stimulate ERK-dependent proliferation of cystic cells, but not normal kidney cells. Previously, B-Raf proto-oncogene (BRAF), a MAPK kinase kinase that activates MEK-ERK signaling, was shown to be a central intermediate in the cAMP mitogenic response. However, the role of BRAF on cyst formation and enlargement in vivo had not been demonstrated. To determine if active BRAF induces kidney cyst formation, we generated transgenic mice that conditionally express BRAFV600E, a common activating mutation, and bred them with Pkhd1-Cre mice to express active BRAF in the collecting ducts, a predominant site for cyst formation. Collecting duct expression of BRAFV600E (BRafCD) caused kidney cyst formation as early as three weeks of age. There were increased levels of phosphorylated ERK (p-ERK) and proliferating cell nuclear antigen, a marker for cell proliferation. BRafCD mice developed extensive kidney fibrosis and elevated blood urea nitrogen, indicating a decline in kidney function, by ten weeks of age. BRAFV600E transgenic mice were also bred to Pkd1RC/RC and pcy/pcy mice, well-characterized slowly progressive PKD models. Collecting duct expression of active BRAF markedly increased kidney weight/body weight, cyst number and size, and total cystic area. There were increased p-ERK levels and proliferating cells, immune cell infiltration, interstitial fibrosis, and a decline in kidney function in both these models. Thus, our findings demonstrate that active BRAF is sufficient to induce kidney cyst formation in normal mice and accelerate cystic disease in PKD mice.


Asunto(s)
Quistes , Túbulos Renales Colectores , Riñón Poliquístico Autosómico Dominante , Riñón Poliquístico Autosómico Recesivo , Ratones , Animales , Túbulos Renales Colectores/metabolismo , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Riñón Poliquístico Autosómico Dominante/complicaciones , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , AMP Cíclico/metabolismo , Fibrosis , Riñón Poliquístico Autosómico Recesivo/genética , Ratones Transgénicos , Quistes/genética , Quistes/patología , Arginina Vasopresina/genética , Arginina Vasopresina/metabolismo , Proto-Oncogenes , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Receptores de Superficie Celular/metabolismo
6.
Kidney Int ; 102(3): 577-591, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35644283

RESUMEN

Primary cilia are sensory organelles built and maintained by intraflagellar transport (IFT) multiprotein complexes. Deletion of several IFT-B genes attenuates polycystic kidney disease (PKD) severity in juvenile and adult autosomal dominant polycystic kidney disease (ADPKD) mouse models. However, deletion of an IFT-A adaptor, Tulp3, attenuates PKD severity in adult mice only. These studies indicate that dysfunction of specific cilia components has potential therapeutic value. To broaden our understanding of cilia dysfunction and its therapeutic potential, we investigate the role of global deletion of an IFT-A gene, Ttc21b, in juvenile and adult mouse models of ADPKD. Both juvenile (postnatal day 21) and adult (six months of age) ADPKD mice exhibited kidney cysts, increased kidney weight/body weight ratios, lengthened kidney cilia, inflammation, and increased levels of the nutrient sensor, O-linked ß-N-acetylglucosamine (O-GlcNAc). Deletion of Ttc21b in juvenile ADPKD mice reduced cortical collecting duct cystogenesis and kidney weight/body weight ratios, increased proximal tubular and glomerular dilations, but did not reduce cilia length, inflammation, nor O-GlcNAc levels. In contrast, Ttc21b deletion in adult ADPKD mice markedly attenuated kidney cystogenesis and reduced cilia length, inflammation, and O-GlcNAc levels. Thus, unlike IFT-B, the effect of Ttc21b deletion in mouse models of ADPKD is development-specific. Unlike an IFT-A adaptor, deleting Ttc21b in juvenile ADPKD mice is partially ameliorative. Thus, our studies suggest that different microenvironmental factors, found in distinct nephron segments and in developing versus mature stages, modify ciliary homeostasis and ADPKD pathobiology. Further, elevated levels of O-GlcNAc, which regulates cellular metabolism and ciliogenesis, may be a pathological feature of ADPKD.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Riñón Poliquístico Autosómico Dominante , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Peso Corporal , Cilios/patología , Modelos Animales de Enfermedad , Inflamación/patología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Riñón/patología , Túbulos Renales , Ratones , Riñón Poliquístico Autosómico Dominante/patología , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/metabolismo
7.
FASEB J ; 35(5): e21533, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33826787

RESUMEN

Polycystic kidney disease (PKD) is a genetic disorder characterized by aberrant renal epithelial cell proliferation and formation and progressive growth of numerous fluid-filled cysts within the kidneys. Previously, we showed that there is elevated Notch signaling compared to normal renal epithelial cells and that Notch signaling contributes to the proliferation of cystic cells. Quinomycin A, a bis-intercalator peptide, has previously been shown to target the Notch signaling pathway and inhibit tumor growth in cancer. Here, we show that Quinomycin A decreased cell proliferation and cyst growth of human ADPKD cyst epithelial cells cultured within a 3D collagen gel. Treatment with Quinomycin A reduced kidney weight to body weight ratio and decreased renal cystic area and fibrosis in Pkd1RC/RC ; Pkd2+/- mice, an orthologous PKD mouse model. This was accompanied by reduced expression of Notch pathway proteins, RBPjk and HeyL and cell proliferation in kidneys of PKD mice. Quinomycin A treatments also normalized cilia length of cyst epithelial cells derived from the collecting ducts. This is the first study to demonstrate that Quinomycin A effectively inhibits PKD progression and suggests that Quinomycin A has potential therapeutic value for PKD patients.


Asunto(s)
Antibacterianos/farmacología , Quistes/tratamiento farmacológico , Modelos Animales de Enfermedad , Equinomicina/farmacología , Enfermedades Renales Poliquísticas/complicaciones , Canales Catiónicos TRPP/fisiología , Animales , Quistes/etiología , Quistes/metabolismo , Quistes/patología , Progresión de la Enfermedad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
8.
J Am Soc Nephrol ; 31(8): 1697-1710, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32554753

RESUMEN

BACKGROUND: Fibrosis is a major cause of loss of renal function in autosomal dominant polycystic kidney disease (ADPKD). In this study, we examined whether vasopressin type-2 receptor (V2R) activity in cystic epithelial cells can stimulate interstitial myofibroblasts and fibrosis in ADPKD kidneys. METHODS: We treated Pkd1 gene knockout (Pkd1KO) mice with dDAVP, a V2R agonist, for 3 days and evaluated the effect on myofibroblast deposition of extracellular matrix (ECM). We also analyzed the effects of conditioned media from primary cultures of human ADPKD cystic epithelial cells on myofibroblast activation. Because secretion of the profibrotic connective tissue growth factor (CCN2) increased significantly in dDAVP-treated Pkd1KO mouse kidneys, we examined its role in V2R-dependent fibrosis in ADPKD as well as that of yes-associated protein (YAP). RESULTS: V2R stimulation using dDAVP increased the renal interstitial myofibroblast population and ECM deposition. Similarly, conditioned media from human ADPKD cystic epithelial cells increased myofibroblast activation in vitro, suggesting a paracrine mechanism. Renal collecting duct-specific gene deletion of CCN2 significantly reduced cyst growth and myofibroblasts in Pkd1KO mouse kidneys. We found that YAP regulates CCN2, and YAP inhibition or gene deletion reduces renal fibrosis in Pkd1KO mouse kidneys. Importantly, YAP inactivation blocks the dDAVP-induced increase in myofibroblasts in Pkd1KO kidneys. Further in vitro studies showed that V2R regulates YAP by an ERK1/2-dependent mechanism in human ADPKD cystic epithelial cells. CONCLUSIONS: Our results demonstrate a novel mechanism by which cystic epithelial cells stimulate myofibroblasts in the pericystic microenvironment, leading to fibrosis in ADPKD. The V2R-YAP-CCN2 cell signaling pathway may present a potential therapeutic target for fibrosis in ADPKD.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Factor de Crecimiento del Tejido Conjuntivo/fisiología , Riñón/patología , Miofibroblastos/fisiología , Riñón Poliquístico Autosómico Dominante/patología , Receptores de Vasopresinas/fisiología , Factores de Transcripción/fisiología , Animales , Desamino Arginina Vasopresina/farmacología , Matriz Extracelular/metabolismo , Fibrosis , Humanos , Ratones , Canales Catiónicos TRPP/fisiología
9.
Am J Physiol Renal Physiol ; 319(6): F1135-F1148, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33166182

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the presence of numerous fluid-filled cysts, extensive fibrosis, and the progressive decline in kidney function. Transforming growth factor-ß1 (TGF-ß1), an important mediator for renal fibrosis and chronic kidney disease, is overexpressed by cystic cells compared with normal kidney cells; however, its role in PKD pathogenesis remains undefined. To investigate the effect of TGF-ß1 on cyst growth, fibrosis, and disease progression, we overexpressed active TGF-ß1 specifically in collecting ducts (CDs) of phenotypic normal (Pkd1RC/+) and Pkd1RC/RC mice. In normal mice, CD-specific TGF-ß1 overexpression caused tubule dilations by 5 wk of age that were accompanied by increased levels of phosphorylated SMAD3, α-smooth muscle actin, vimentin, and periostin; however, it did not induce overt cyst formation by 20 wk. In Pkd1RC/RC mice, CD overexpression of TGF-ß1 increased cyst epithelial cell proliferation. However, extensive fibrosis limited cyst enlargement and caused contraction of the kidneys, leading to a loss of renal function and a shortened lifespan of the mice. These data demonstrate that TGF-ß1-induced fibrosis constrains cyst growth and kidney enlargement and accelerates the decline of renal function, supporting the hypothesis that a combined therapy that inhibits renal cyst growth and fibrosis will be required to effectively treat ADPKD.


Asunto(s)
Riñón/metabolismo , Riñón Poliquístico Autosómico Dominante/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Apoptosis , Proliferación Celular , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Transición Epitelial-Mesenquimal , Femenino , Fibrosis , Riñón/patología , Riñón/fisiopatología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/patología , Riñón Poliquístico Autosómico Dominante/fisiopatología , Receptores de Superficie Celular/deficiencia , Receptores de Superficie Celular/genética , Factores de Tiempo , Factor de Crecimiento Transformador beta1/genética
10.
Am J Physiol Renal Physiol ; 317(2): F343-F360, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31091126

RESUMEN

Polycystic kidney disease (PKD) is characterized by slowly expanding renal cysts that damage the kidney, typically resulting in renal failure by the fifth decade. The most common cause of death in these patients, however, is cardiovascular disease. Expanding cysts in PKD induce chronic kidney injury that is accompanied by immune cell infiltration, including macrophages, which we and others have shown can promote disease progression in PKD mouse models. Here, we show that monocyte chemoattractant protein-1 [MCP-1/chemokine (C-C motif) ligand 2 (CCL2)] is responsible for the majority of monocyte chemoattractant activity produced by renal PKD cells from both mice and humans. To test whether the absence of MCP-1 lowers renal macrophage concentration and slows disease progression, we generated genetic knockout (KO) of MCP-1 in a mouse model of PKD [congenital polycystic kidney (cpk) mice]. Cpk mice are born with rapidly expanding renal cysts, accompanied by a decline in kidney function and death by postnatal day 21. Here, we report that KO of MCP-1 in these mice increased survival, with some mice living past 3 mo. Surprisingly, however, there was no significant difference in renal macrophage concentration, nor was there improvement in cystic disease or kidney function. Examination of mice revealed cardiac hypertrophy in cpk mice, and measurement of cardiac electrical activity via ECG revealed repolarization abnormalities. MCP-1 KO did not affect the number of cardiac macrophages, nor did it alleviate the cardiac aberrancies. However, MCP-1 KO did prevent the development of pulmonary edema, which occurred in cpk mice, and promoted decreased resting heart rate and increased heart rate variability in both cpk and noncystic mice. These data suggest that in this mouse model of PKD, MCP-1 altered cardiac/pulmonary function and promoted death outside of its role as a macrophage chemoattractant.


Asunto(s)
Arritmias Cardíacas/metabolismo , Cardiomegalia/metabolismo , Quimiocina CCL2/metabolismo , Riñón/metabolismo , Pulmón/metabolismo , Miocardio/metabolismo , Enfermedades Renales Poliquísticas/metabolismo , Edema Pulmonar/metabolismo , Animales , Arritmias Cardíacas/patología , Arritmias Cardíacas/fisiopatología , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Células Cultivadas , Quimiocina CCL2/deficiencia , Quimiocina CCL2/genética , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Fibrosis , Humanos , Mediadores de Inflamación/metabolismo , Riñón/patología , Riñón/fisiopatología , Pulmón/patología , Pulmón/fisiopatología , Macrófagos/metabolismo , Macrófagos/patología , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Miocardio/patología , Enfermedades Renales Poliquísticas/patología , Enfermedades Renales Poliquísticas/fisiopatología , Edema Pulmonar/patología , Edema Pulmonar/fisiopatología , Edema Pulmonar/prevención & control , Factores de Tiempo
11.
FASEB J ; 32(8): 4612-4623, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29553832

RESUMEN

Autosomal-dominant polycystic kidney disease (ADPKD) is a devastating disorder that is characterized by a progressive decline in renal function as a result of the development of fluid-filled cysts. Defective flow-mediated [Ca2+]i responses and disrupted [Ca2+]i homeostasis have been repeatedly associated with cyst progression in ADPKD. We have previously demonstrated that the transient receptor potential vanilloid type 4 (TRPV4) channel is imperative for flow-mediated [Ca2+]i responses in murine distal renal tubule cells. To determine whether compromised TRPV4 function contributes to aberrant Ca2+ regulation in ADPKD, we assessed TRPV4 function in primary cells that were cultured from ADPKD and normal human kidneys (NHKs). Single-channel TRPV4 activity and TRPV4-dependent Ca2+ influxes were drastically reduced in ADPKD cells, which correlated with distorted [Ca2+]i signaling. Whereas total TRPV4 protein levels were comparable in NHK and ADPKD cells, we detected a marked decrease in TRPV4 glycosylation in ADPKD cells. Tunicamycin-induced deglycosylation inhibited TRPV4 activity and compromised [Ca2+]i signaling in NHK cells. Overall, we demonstrate that TRPV4 glycosylation and channel activity are diminished in human ADPKD cells compared with NHK cells, and that this contributes significantly to the distorted [Ca2+]i dynamics. We propose that TRPV4 stimulation may be beneficial for restoring [Ca2+]i homeostasis in cyst cells, thereby interfering with ADPKD progression.-Tomilin, V., Reif, G. A., Zaika, O., Wallace, D. P., Pochynyuk, O. Deficient transient receptor potential vanilloid type 4 function contributes to compromised [Ca2+]i homeostasis in human autosomal-dominant polycystic kidney disease cells.


Asunto(s)
Calcio/metabolismo , Homeostasis/fisiología , Riñón Poliquístico Autosómico Dominante/metabolismo , Canales Catiónicos TRPV/deficiencia , Canales Catiónicos TRPV/metabolismo , Animales , Células CHO , Células Cultivadas , Cricetulus , Glicosilación , Humanos , Riñón/metabolismo , Persona de Mediana Edad , Transducción de Señal/fisiología
12.
Adv Exp Med Biol ; 1132: 99-112, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31037629

RESUMEN

Periostin is a matricellular protein that is expressed in several tissues during embryonic development; however, its expression in adults is mostly restricted to collagen-rich connective tissues. Periostin is expressed only briefly during kidney development, but it is not normally detected in the adult kidney. Recent evidence has revealed that periostin is aberrantly expressed in several forms of chronic kidney disease (CKD), and that its expression correlates with the degree of interstitial fibrosis and the decline in renal function. Polycystic kidney disease (PKD), a genetic disorder, is characterized by the formation of numerous fluid-filled cysts in the kidneys. Periostin is secreted by the cyst epithelial cells and accumulates within the extracellular matrix adjacent to the cysts. In PKD mice, periostin overexpression accelerates cyst growth and contributes to structural changes in the kidneys, including interstitial fibrosis. Recent evidence suggests that periostin is a tissue repair molecule; however, its role in repair following acute kidney injury has not been investigated. It is thought that persistent expression of this protein in CKD contributes importantly to tubulointerstitial fibrosis and the progressive decline in renal function. Future studies to define the diverse actions of periostin during kidney injury may lead to effective therapies to slow PKD progression and possibly prevent the development of CKD. This chapter reviews the current literature on the expression of periostin in PKD and other forms of CKD, mechanisms for periostin stimulated cyst growth, its potential role in extracellular matrix production and renal fibrosis, and the evidence for periostin as a novel biomarker for kidney disease.


Asunto(s)
Moléculas de Adhesión Celular/fisiología , Riñón/fisiología , Insuficiencia Renal Crónica/fisiopatología , Animales , Matriz Extracelular , Fibrosis , Humanos , Riñón/patología , Ratones , Enfermedades Renales Poliquísticas/fisiopatología
13.
J Am Soc Nephrol ; 29(10): 2482-2492, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30185468

RESUMEN

BACKGROUND: The major form of autosomal dominant polycystic kidney disease is caused by heterozygous mutations in PKD1, the gene that encodes polycystin-1 (PC1). Unlike PKD1 genes in the mouse and most other mammals, human PKD1 is unusual in that it contains two long polypyrimidine tracts in introns 21 and 22 (2.5 kbp and 602 bp, respectively; 97% cytosine and thymine). Although these polypyrimidine tracts have been shown to form thermodynamically stable segments of triplex DNA that can cause DNA polymerase stalling and enhance the local mutation rate, the efficiency of transcription and splicing across these cytosine- and thymine-rich introns has been unexplored. METHODS: We used RT-PCR and Western blotting (using an mAb to the N terminus) to probe splicing events over exons 20-24 in the mouse and human PKD1 genes as well as Nanopore sequencing to confirm the presence of multiple splice forms. RESULTS: Analysis of PC1 indicates that humans, but not mice, have a smaller than expected protein product, which we call Trunc_PC1. The findings show that Trunc_PC1 is the protein product of abnormal differential splicing across introns 21 and 22 and that 28.8%-61.5% of PKD1 transcripts terminate early. CONCLUSIONS: The presence of polypyrimidine tracts decreases levels of full-length PKD1 mRNA from normal alleles. In heterozygous individuals, low levels of full-length PC1 may reduce polycystin signaling below a critical "cystogenic" threshold.


Asunto(s)
Empalme Alternativo , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/metabolismo , Canales Catiónicos TRPP/biosíntesis , Canales Catiónicos TRPP/genética , Adulto , Animales , Secuencia de Bases , Exones , Femenino , Humanos , Intrones , Masculino , Ratones , Persona de Mediana Edad , Mutación , Terminación de la Cadena Péptídica Traduccional/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Especificidad de la Especie , Canales Catiónicos TRPP/química , Adulto Joven
14.
Am J Physiol Renal Physiol ; 315(6): F1695-F1707, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30332313

RESUMEN

In polycystic kidney disease (PKD), persistent activation of cell proliferation and matrix production contributes to cyst growth and fibrosis, leading to progressive deterioration of renal function. Previously, we showed that periostin, a matricellular protein involved in tissue repair, is overexpressed by cystic epithelial cells of PKD kidneys. Periostin binds αVß3-integrins and activates integrin-linked kinase (ILK), leading to Akt/mammalian target of rapamycin (mTOR)-mediated proliferation of human PKD cells. By contrast, periostin does not stimulate the proliferation of normal human kidney cells. This difference in the response to periostin is due to elevated expression of αVß3-integrins by cystic cells. To determine whether periostin accelerates cyst growth and fibrosis, we generated mice with conditional overexpression of periostin in the collecting ducts (CDs). Ectopic CD expression of periostin was not sufficient to induce cyst formation or fibrosis in wild-type mice. However, periostin overexpression in pcy/pcy ( pcy) kidneys significantly increased mTOR activity, cell proliferation, cyst growth, and interstitial fibrosis; and accelerated the decline in renal function. Moreover, CD-specific overexpression of periostin caused a decrease in the survival of pcy mice. These pathological changes were accompanied by increased renal expression of vimentin, α-smooth muscle actin, and type I collagen. We also found that periostin increased gene expression of pathways involved in repair, including integrin and growth factor signaling and ECM production, and it stimulated focal adhesion kinase, Rho GTPase, cytoskeletal reorganization, and migration of PKD cells. These results suggest that periostin stimulates signaling pathways involved in an abnormal tissue repair process that contributes to cyst growth and fibrosis in PKD.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Proliferación Celular , Células Epiteliales/metabolismo , Túbulos Renales Colectores/metabolismo , Riñón Poliquístico Autosómico Dominante/metabolismo , Adulto , Anciano , Animales , Estudios de Casos y Controles , Moléculas de Adhesión Celular/genética , Movimiento Celular , Células Cultivadas , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Células Epiteliales/patología , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Femenino , Fibrosis , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Túbulos Renales Colectores/patología , Masculino , Ratones Transgénicos , Persona de Mediana Edad , Fenotipo , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/patología , Receptores de Superficie Celular/genética , Transducción de Señal , Factores de Tiempo , Regulación hacia Arriba
17.
Exp Cell Res ; 355(2): 142-152, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28385574

RESUMEN

The hormone ouabain has been shown to enhance the cystic phenotype of autosomal dominant polycystic kidney disease (ADPKD). Among other characteristics, the ADPKD phenotype includes cell de-differentiation and epithelial to mesenchymal transition (EMT). Here, we determined whether physiological concentrations of ouabain induces EMT in human renal epithelial cells from patients with ADPKD. We found that ADPKD cells respond to ouabain with a decrease in expression of the epithelial marker E-cadherin and increase in the expression of the mesenchymal markers N-cadherin, α smooth muscle actin (αSMA) and collagen-I; and the tight junction protein occludin and claudin-1. Other adhesion molecules, such as ZO-1, ß-catenin and vinculin were not significantly modified by ouabain. At the cellular level, ouabain stimulated ADPKD cell migration, reduced cell-cell interaction, and the ability of ADPKD cells to form aggregates. Moreover, ouabain increased the transepithelial electrical resistance of ADPKD cell monolayers, suggesting that the paracellular transport pathway was preserved in the cells. These effects of ouabain were not observed in normal human kidney (NHK) cells. Altogether these results show a novel role for ouabain in ADPKD, inducing changes that lead to a partial EMT phenotype in the cells. These effects further support the key role that ouabain has as a factor that promotes the cystic characteristics of ADPKD cells.


Asunto(s)
Transición Epitelial-Mesenquimal/efectos de los fármacos , Ouabaína/farmacología , Riñón Poliquístico Autosómico Dominante/patología , Adulto , Anciano , Adhesión Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Riñón Poliquístico Autosómico Dominante/metabolismo , Relación Estructura-Actividad
18.
J Am Soc Nephrol ; 28(9): 2708-2719, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28522687

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is characterized by innumerous fluid-filled cysts and progressive deterioration of renal function. Previously, we showed that periostin, a matricellular protein involved in tissue repair, is markedly overexpressed by cyst epithelial cells. Periostin promotes cell proliferation, cyst growth, interstitial fibrosis, and the decline in renal function in PKD mice. Here, we investigated the regulation of these processes by the integrin-linked kinase (ILK), a scaffold protein that links the extracellular matrix to the actin cytoskeleton and is stimulated by periostin. Pharmacologic inhibition or shRNA knockdown of ILK prevented periostin-induced Akt/mammalian target of rapamycin (mTOR) signaling and ADPKD cell proliferation in vitro Homozygous deletion of ILK in renal collecting ducts (CD) of Ilkfl/fl ;Pkhd1-Cre mice caused tubule dilations, apoptosis, fibrosis, and organ failure by 10 weeks of age. By contrast, Ilkfl/+ ;Pkhd1-Cre mice had normal renal morphology and function and survived >1 year. Reduced expression of ILK in Pkd1fl/fl ;Pkhd1-Cre mice, a rapidly progressive model of ADPKD, decreased renal Akt/mTOR activity, cell proliferation, cyst growth, and interstitial fibrosis, and significantly improved renal function and animal survival. Additionally, CD-specific knockdown of ILK strikingly reduced renal cystic disease and fibrosis and extended the life of pcy/pcy mice, a slowly progressive PKD model. We conclude that ILK is critical for maintaining the CD epithelium and renal function and is a key intermediate for periostin activation of signaling pathways involved in cyst growth and fibrosis in PKD.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Túbulos Renales Colectores/patología , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/patología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Apoptosis/genética , Proliferación Celular/genética , Dilatación Patológica/genética , Progresión de la Enfermedad , Fibrosis , Silenciador del Gen , Heterocigoto , Homocigoto , Humanos , Masculino , Ratones , Riñón Poliquístico Autosómico Dominante/fisiopatología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Insuficiencia Renal/genética , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
19.
Am J Physiol Renal Physiol ; 313(5): F1077-F1083, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28794066

RESUMEN

Urinary tract infection (UTI) is a broad term referring to an infection of the kidneys, ureters, bladder, and/or urethra. Because of its prevalence, frequent recurrence, and rising resistance to antibiotics, UTI has become a challenge in clinical practice. Autosomal-dominant polycystic kidney disease (ADPKD) is the most common monogenic disorder of the kidney and is characterized by the growth of fluid-filled cysts in both kidneys. Progressive cystic enlargement, inflammation, and interstitial fibrosis result in nephron loss with subsequent decline in kidney function. ADPKD patients frequently develop UTI; however, the cellular and molecular mechanisms responsible for the high UTI incidence in ADPKD patients remain virtually unaddressed. Emerging evidence suggests that α-intercalated cells (α-ICs) of the collecting ducts function in the innate immune defense against UTI. α-ICs inhibit bacterial growth by acidifying urine and secreting neutrophil gelatinase-associated lipocalin (NGAL) that chelates siderophore-containing iron. It is necessary to determine, therefore, if ADPKD patients with recurrent UTI have a reduced number and/or impaired function of α-ICs. Identification of the underlying cellular and molecular mechanisms may lead to the development of novel strategies to reduce UTI in ADPKD.


Asunto(s)
Inflamación/metabolismo , Lipocalinas/metabolismo , Riñón Poliquístico Autosómico Dominante/metabolismo , Vejiga Urinaria/metabolismo , Infecciones Urinarias/metabolismo , Animales , Humanos , Inflamación/complicaciones , Hierro/metabolismo , Vejiga Urinaria/irrigación sanguínea , Infecciones Urinarias/prevención & control , Infecciones Urinarias/terapia
20.
Gene Expr ; 17(4): 313-326, 2017 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-28915934

RESUMEN

Autosomal recessive polycystic kidney disease/congenital hepatic fibrosis (ARPKD/CHF) is a rare but fatal genetic disease characterized by progressive cyst development in the kidneys and liver. Liver cysts arise from aberrantly proliferative cholangiocytes accompanied by pericystic fibrosis and inflammation. Yes-associated protein (YAP), the downstream effector of the Hippo signaling pathway, is implicated in human hepatic malignancies such as hepatocellular carcinoma, cholangiocarcinoma, and hepatoblastoma, but its role in hepatic cystogenesis in ARPKD/CHF is unknown. We studied the role of the YAP in hepatic cyst development using polycystic kidney (PCK) rats, an orthologous model of ARPKD, and in human ARPKD/CHF patients. The liver cyst wall epithelial cells (CWECs) in PCK rats were highly proliferative and exhibited expression of YAP. There was increased expression of YAP target genes, Ccnd1 (cyclin D1) and Ctgf (connective tissue growth factor), in PCK rat livers. Extensive expression of YAP and its target genes was also detected in human ARPKD/CHF liver samples. Finally, pharmacological inhibition of YAP activity with verteporfin and short hairpin (sh) RNA-mediated knockdown of YAP expression in isolated liver CWECs significantly reduced their proliferation. These data indicate that increased YAP activity, possibly through dysregulation of the Hippo signaling pathway, is associated with hepatic cyst growth in ARPKD/CHF.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Proliferación Celular/genética , Células Epiteliales/metabolismo , Enfermedades Renales Poliquísticas/genética , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Células Cultivadas , Factor de Crecimiento del Tejido Conjuntivo/genética , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Modelos Animales de Enfermedad , Células Epiteliales/patología , Femenino , Expresión Génica , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedades Renales Poliquísticas/metabolismo , Enfermedades Renales Poliquísticas/patología , Interferencia de ARN , Ratas Sprague-Dawley , Proteínas Señalizadoras YAP
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA