Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Genet Med ; 26(8): 101164, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38757444

RESUMEN

PURPOSE: The ClinGen Actionability Working Group (AWG) developed an evidence-based framework to generate actionability reports and scores of gene-condition pairs in the context of secondary findings from genome sequencing. Here we describe the expansion of the framework to include actionability assertions. METHODS: Initial development of the actionability rubric was based on previously scored adult gene-condition pairs and individual expert evaluation. Rubric refinement was iterative and based on evaluation, feedback, and discussion. The final rubric was pragmatically evaluated via integration into actionability assessments for 27 gene-condition pairs. RESULTS: The resulting rubric has a 4-point scale (limited, moderate, strong, and definitive) and uses the highest-scoring outcome-intervention pair of each gene-condition pair to generate a preliminary assertion. During AWG discussions, predefined criteria and factors guide discussion to produce a consensus assertion for a gene-condition pair, which may differ from the preliminary assertion. The AWG has retrospectively generated assertions for all previously scored gene-condition pairs and are prospectively asserting on gene-condition pairs under assessment, having completed over 170 adult and 188 pediatric gene-condition pairs. CONCLUSION: The AWG expanded its framework to provide actionability assertions to enhance the clinical value of their resources and increase their utility as decision aids regarding return of secondary findings.


Asunto(s)
Medicina Basada en la Evidencia , Humanos , Medicina Basada en la Evidencia/métodos , Pruebas Genéticas/métodos , Hallazgos Incidentales , Secuenciación Completa del Genoma
2.
Chem Res Toxicol ; 36(3): 402-419, 2023 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-36821828

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are a diverse set of commercial chemicals widely detected in humans and the environment. However, only a limited number of PFAS are associated with epidemiological or experimental data for hazard identification. To provide developmental neurotoxicity (DNT) hazard information, the work herein employed DNT new approach methods (NAMs) to generate in vitro screening data for a set of 160 PFAS. The DNT NAMs battery was comprised of the microelectrode array neuronal network formation assay (NFA) and high-content imaging (HCI) assays to evaluate proliferation, apoptosis, and neurite outgrowth. The majority of PFAS (118/160) were inactive or equivocal in the DNT NAMs, leaving 42 active PFAS that decreased measures of neural network connectivity and neurite length. Analytical quality control indicated 43/118 inactive PFAS samples and 10/42 active PFAS samples were degraded; as such, careful interpretation is required as some negatives may have been due to loss of the parent PFAS, and some actives may have resulted from a mixture of parent and/or degradants of PFAS. PFAS containing a perfluorinated carbon (C) chain length ≥8, a high C:fluorine ratio, or a carboxylic acid moiety were more likely to be bioactive in the DNT NAMs. Of the PFAS positives in DNT NAMs, 85% were also active in other EPA ToxCast assays, whereas 79% of PFAS inactives in the DNT NAMs were active in other assays. These data demonstrate that a subset of PFAS perturb neurodevelopmental processes in vitro and suggest focusing future studies of DNT on PFAS with certain structural feature descriptors.


Asunto(s)
Fluorocarburos , Síndromes de Neurotoxicidad , Humanos , Síndromes de Neurotoxicidad/metabolismo , Neuronas/metabolismo , Proyección Neuronal , Apoptosis , Fluorocarburos/toxicidad
3.
Cell Biol Toxicol ; 39(5): 2311-2329, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-35877023

RESUMEN

In dose-response and structure-activity studies, human hepatic HepG2 cells were exposed for 3 days to nano Cu, nano CuO or CuCl2 (ions) at doses between 0.1 and 30 ug/ml (approximately the no observable adverse effect level to a high degree of cytotoxicity). Various biochemical parameters were then evaluated to study cytotoxicity, cell growth, hepatic function, and oxidative stress. With nano Cu and nano CuO, few indications of cytotoxicity were observed between 0.1 and 3 ug/ml. In respect to dose, lactate dehydrogenase and aspartate transaminase were the most sensitive cytotoxicity parameters. The next most responsive parameters were alanine aminotransferase, glutathione reductase, glucose 6-phosphate dehydrogenase, and protein concentration. The medium responsive parameters were superoxide dismutase, gamma glutamyltranspeptidase, total bilirubin, and microalbumin. The parameters glutathione peroxidase, glutathione reductase, and protein were all altered by nano Cu and nano CuO but not by CuCl2 exposures. Our chief observations were (1) significant decreases in glucose 6-phosphate dehydrogenase and glutathione reductase was observed at doses below the doses that show high cytotoxicity, (2) even high cytotoxicity did not induce large changes in some study parameters (e.g., alkaline phosphatase, catalase, microalbumin, total bilirubin, thioredoxin reductase, and triglycerides), (3) even though many significant biochemical effects happen only at doses showing varying degrees of cytotoxicity, it was not clear that cytotoxicity alone caused all of the observed significant biochemical effects, and (4) the decreased glucose 6-phosphate dehydrogenase and glutathione reductase support the view that oxidative stress is a main toxicity pathway of CuCl2 and Cu-containing nanomaterials.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanoestructuras , Humanos , Cobre/toxicidad , Células Hep G2 , Glutatión Reductasa/metabolismo , Glutatión Reductasa/farmacología , Estrés Oxidativo , Nanoestructuras/toxicidad , Bilirrubina/metabolismo , Bilirrubina/farmacología , Fosfatos/farmacología , Glucosa
4.
Genet Med ; 24(6): 1328-1335, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35341655

RESUMEN

PURPOSE: Synthesis and curation of evidence regarding the clinical actionability of secondary findings (SFs) from genome-scale sequencing are needed to support decision-making on reporting of these findings. To assess actionability of SFs in children and adolescents, the Clinical Genome Resource established the Pediatric Actionability Working Group (AWG). METHODS: The Pediatric AWG modified the framework of the existing Adult AWG, which included production of summary reports of actionability for genes and associated conditions and consensus actionability scores for specific outcome-intervention pairs. Modification of the adult framework for the pediatric setting included accounting for special considerations for reporting presymptomatic or predictive genetic findings in the pediatric context, such as maintaining future autonomy by not disclosing conditions not actionable until adulthood. The Pediatric AWG then applied this new framework to genes and associated conditions with putative actionability. RESULTS: As of September 2021, the Pediatric AWG applied the new framework to 70 actionability topics representing 143 genes. Reports and scores are publicly available at www.clinicalgenome.org. CONCLUSION: The Pediatric AWG continues to curate gene-condition topics and build an evidence-based resource, supporting clinical communities and decision-makers with policy development on the return of SFs in pediatric populations.


Asunto(s)
Pruebas Genéticas , Informe de Investigación , Adolescente , Adulto , Niño , Mapeo Cromosómico , Humanos
5.
Regul Toxicol Pharmacol ; 131: 105167, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35413399

RESUMEN

DL-glufosinate ammonium (DL-GLF) is a registered herbicide for which a guideline Developmental Neurotoxicity (DNT) study has been conducted. Offspring effects included altered brain morphometrics, decreased body weight, and increased motor activity. Guideline DNT studies are not available for its enriched isomers L-GLF acid and L-GLF ammonium; conducting one would be time consuming, resource-intensive, and possibly redundant given the existing DL-GLF DNT. To support deciding whether to request a guideline DNT study for the L-GLF isomers, DL-GLF and the L-GLF isomers were screened using in vitro assays for network formation and neurite outgrowth. DL-GLF and L-GLF isomers were without effects in both assays. DL-GLF and L-GLF (1-100 µM) isomers increased mean firing rate of mature networks to 120-140% of baseline. In vitro toxicokinetic assessments were used to derive administered equivalent doses (AEDs) for the in vitro testing concentrations. The AED for L-GLF was ∼3X higher than the NOAEL from the DL-GLF DNT indicating that the available guideline study would be protective of potential DNT due to L-GLF exposure. Based in part on the results of these in vitro studies, EPA is not requiring L-GLF isomer guideline DNT studies, thereby providing a case study for a useful application of DNT screening assays.


Asunto(s)
Síndromes de Neurotoxicidad , Plaguicidas , Aminobutiratos/toxicidad , Humanos , Síndromes de Neurotoxicidad/diagnóstico , Síndromes de Neurotoxicidad/etiología , Toxicocinética
6.
Arch Toxicol ; 94(2): 469-484, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31822930

RESUMEN

The US Environmental Protection Agency's ToxCast program has generated toxicity data for thousands of chemicals but does not adequately assess potential neurotoxicity. Networks of neurons grown on microelectrode arrays (MEAs) offer an efficient approach to screen compounds for neuroactivity and distinguish between compound effects on firing, bursting, and connectivity patterns. Previously, single concentrations of the ToxCast Phase II library were screened for effects on mean firing rate (MFR) in rat primary cortical networks. Here, we expand this approach by retesting 384 of those compounds (including 222 active in the previous screen) in concentration-response across 43 network activity parameters to evaluate neural network function. Using hierarchical clustering and machine learning methods on the full suite of chemical-parameter response data, we identified 15 network activity parameters crucial in characterizing activity of 237 compounds that were response actives ("hits"). Recognized neurotoxic compounds in this network function assay were often more potent compared to other ToxCast assays. Of these chemical-parameter responses, we identified three k-means clusters of chemical-parameter activity (i.e., multivariate MEA response patterns). Next, we evaluated the MEA clusters for enrichment of chemical features using a subset of ToxPrint chemotypes, revealing chemical structural features that distinguished the MEA clusters. Finally, we assessed distribution of neurotoxicants with known pharmacology within the clusters and found that compounds segregated differentially. Collectively, these results demonstrate that multivariate MEA activity patterns can efficiently screen for diverse chemical activities relevant to neurotoxicity, and that response patterns may have predictive value related to chemical structural features.


Asunto(s)
Bases de Datos de Compuestos Químicos , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos/métodos , Síndromes de Neurotoxicidad/patología , Pruebas de Toxicidad/métodos , Animales , Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Aprendizaje Automático , Microelectrodos , Red Nerviosa/efectos de los fármacos , Redes Neurales de la Computación , Neuronas/efectos de los fármacos , Ratas Long-Evans
7.
Mol Genet Metab ; 128(1-2): 122-128, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31399326

RESUMEN

Newborn screening is an incredibly useful tool for the early identification of many metabolic disorders, including fatty acid oxidation (FAO) disorders. In many cases, molecular tests are necessary to reach a final diagnosis, highlighting the need for a thorough evaluation of genes implicated in FAO disorders. Using the ClinGen (Clinical Genome Resource) clinical validity framework, thirty genes were analyzed for the strength of evidence supporting their association with FAO disorders. Evidence was gathered from the literature by biocurators and presented to disease experts for review in order to assign a clinical validity classification of Definitive, Strong, Moderate, Limited, Disputed, Refuted, or No Reported Evidence. Of the gene-disease relationships evaluated, 22/30 were classified as Definitive, three as Moderate, one as Limited, three as No Reported Evidence and one as Disputed. Gene-disease relationships with a Limited, Disputed, and No Reported Evidence were found on two, six, and up to four panels out of 30 FAO disorder-specific panels, respectively, in the National Institute of Health Genetic Testing Registry, while over 70% of the genes on panels are definitively associated with an FAO disorder. These results highlight the need to systematically assess the clinical relevance of genes implicated in fatty acid oxidation disorders in order to improve the interpretation of genetic testing results and diagnosis of patients with these disorders.


Asunto(s)
Ácidos Grasos/metabolismo , Pruebas Genéticas , Errores Innatos del Metabolismo Lipídico/diagnóstico , Errores Innatos del Metabolismo Lipídico/genética , Predisposición Genética a la Enfermedad , Humanos , Recién Nacido , Tamizaje Neonatal , Oxidación-Reducción , Reproducibilidad de los Resultados
8.
J Pediatr ; 209: 68-76, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30851990

RESUMEN

OBJECTIVE: To assess the performance of a standardized, age-based metric for scoring clinical actionability to evaluate conditions for inclusion in newborn screening and compare it with the results from other contemporary methods. STUDY DESIGN: The North Carolina Newborn Exome Sequencing for Universal Screening study developed an age-based, semiquantitative metric to assess the clinical actionability of gene-disease pairs and classify them with respect to age of onset or timing of interventions. This categorization was compared with the gold standard Recommended Uniform Screening Panel and other methods to evaluate gene-disease pairs for newborn genomic sequencing. RESULTS: We assessed 822 gene-disease pairs, enriched for pediatric onset of disease and suspected actionability. Of these, 466 were classified as having childhood onset and high actionability, analogous to conditions selected for the Recommended Uniform Screening Panel core panel. Another 245 were classified as having childhood onset and low to no actionability, 25 were classified as having adult onset and high actionability, 19 were classified as having adult onset and low to no actionability, and 67 were excluded due to controversial evidence and/or prenatal onset. CONCLUSIONS: This study describes a novel method to facilitate decisions about the potential use of genomic sequencing for newborn screening. These categories may assist parents and physicians in making informed decisions about the disclosure of results from voluntary genomic sequencing in children.


Asunto(s)
Mapeo Cromosómico/métodos , Enfermedades Genéticas Congénitas/diagnóstico , Pruebas Genéticas/métodos , Tamizaje Neonatal/métodos , Análisis de Secuencia de ADN/métodos , Toma de Decisiones Conjunta , Femenino , Enfermedades Genéticas Congénitas/epidemiología , Genoma Humano , Humanos , Recién Nacido , Masculino , North Carolina , Secuenciación del Exoma
9.
Cell Biol Toxicol ; 35(2): 129-145, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30368635

RESUMEN

The potential mammalian hepatotoxicity of nanomaterials was explored in dose-response and structure-activity studies in human hepatic HepG2 cells exposed to between 10 and 1000 µg/ml of five different CeO2, three SiO2, and one TiO2-based particles for 3 days. Various biochemical parameters were then evaluated to study cytotoxicity, cell growth, hepatic function, and oxidative stress. Few indications of cytotoxicity were observed between 10 and 30 µg/ml. In the 100 to 300 µg/ml exposure range, a moderate degree of cytotoxicity was often observed. At 1000 µg/ml exposures, all but TiO2 showed a high degree of cytotoxicity. Cytotoxicity per se did not seem to fully explain the observed patterns of biochemical parameters. Four nanomaterials (all three SiO2) decreased glucose 6-phosphate dehydrogenase activity with some significant decreases observed at 30 µg/ml. In the range of 100 to 1000 µg/ml, the activities of glutathione reductase (by all three SiO2) and glutathione peroxidase were decreased by some nanomaterials. Decreased glutathione concentration was also found after exposure to four nanomaterials (all three nano SiO2 particles). In this study, the more responsive and informative assays were glucose 6-phosphate dehydrogenase, glutathione reductase, superoxide dismutase, lactate dehydrogenase, and aspartate transaminase. In this study, there were six factors that contribute to oxidative stress observed in nanomaterials exposed to hepatocytes (decreased glutathione content, reduced glucose 6-phosphate dehydrogenase, glutathione reductase, glutathione peroxidase, superoxide dismutase, and increased catalase activities). With respect to structure-activity, nanomaterials of SiO2 were more effective than CeO2 in reducing glutathione content, glucose 6-phosphate dehydrogenase, glutathione reductase, and superoxide dismutase activities.


Asunto(s)
Cerio/toxicidad , Hígado/efectos de los fármacos , Nanoestructuras/toxicidad , Dióxido de Silicio/toxicidad , Titanio/toxicidad , Proliferación Celular/efectos de los fármacos , Citotoxinas/toxicidad , Células Hep G2 , Humanos , Hígado/enzimología , Pruebas de Función Hepática , Estrés Oxidativo , Pruebas de Toxicidad/métodos
10.
Toxicol Appl Pharmacol ; 354: 24-39, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29626487

RESUMEN

Medium- to high-throughput in vitro assays that recapitulate the critical processes of nervous system development have been proposed as a means to facilitate rapid testing and identification of chemicals which may affect brain development. In vivo neurodevelopment is a complex progression of distinct cellular processes. Therefore, batteries of in vitro assays that model and quantify effects on a variety of neurodevelopmental processes have the potential to identify chemicals which may affect brain development at different developmental stages. In the present study, the results of concentration-response screening of 67 reference chemicals in a battery of high content imaging and microplate reader-based assays that evaluate neural progenitor cell proliferation, neural proginitor cell apoptosis, neurite initiation/outgrowth, neurite maturation and synaptogenesis are summarized and compared. The assay battery had a high degree of combined sensitivity (87%) for categorizing chemicals known to affect neurodevelopment as active and a moderate degree of combined specificity (71%) for categorizing chemicals not associated with affects on neurodevelopment as inactive. The combined sensitivity of the assay battery was higher compared to any individual assay while the combined specificity of the assay battery was lower compared to any individual assay. When selectivity of effects for a neurodevelopmental endpoint as compared to general cytotoxicity was taken into account, the combined sensitivity of the assay battery decreased (68%) while the combined specificity increased (93%). The identity and potency of chemicals identified as active varied across the assay battery, underscoring the need for use of a combination of diverse in vitro models to comprehensively screen chemicals and identify those which potentially affect neurodevelopment. Overall, these data indicate that a battery of assays which address many different processes in nervous system development may be used to identify potential developmental neurotoxicants and to distinguish specific from generalized cytotoxic effects with a high degree of success.


Asunto(s)
Neocórtex/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Neuronas/efectos de los fármacos , Síndromes de Neurotoxicidad/etiología , Pruebas de Toxicidad , Factores de Edad , Animales , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Determinación de Punto Final , Ensayos Analíticos de Alto Rendimiento , Humanos , Neocórtex/crecimiento & desarrollo , Neocórtex/patología , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/patología , Proyección Neuronal/efectos de los fármacos , Neuronas/patología , Síndromes de Neurotoxicidad/patología , Síndromes de Neurotoxicidad/fisiopatología , Ratas , Ratas Long-Evans , Reproducibilidad de los Resultados , Medición de Riesgo
11.
Toxicol Appl Pharmacol ; 354: 81-93, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29397954

RESUMEN

Measuring electrical activity of neural networks by microelectrode array (MEA) has recently shown promise for screening level assessments of chemical toxicity on network development and function. Important aspects of interneuronal communication can be quantified from a single MEA recording, including individual firing rates, coordinated bursting, and measures of network synchrony, providing rich datasets to evaluate chemical effects. Further, multiple recordings can be made from the same network, including during the formation of these networks in vitro. The ability to perform multiple recording sessions over the in vitro development of network activity may provide further insight into developmental effects of neurotoxicants. In the current study, a recently described MEA-based screen of 86 compounds in primary rat cortical cultures over 12 days in vitro was revisited to establish a framework that integrates all available primary measures of electrical activity from MEA recordings into a composite metric for deviation from normal activity (total scalar perturbation). Examining scalar perturbations over time and increasing concentration of compound allowed for definition of critical concentrations or "tipping points" at which the neural networks switched from recovery to non-recovery trajectories for 42 compounds. These tipping point concentrations occurred at predominantly lower concentrations than those causing overt cell viability loss or disrupting individual network parameters, suggesting tipping points may be a more sensitive measure of network functional loss. Comparing tipping points for six compounds with plasma concentrations known to cause developmental neurotoxicity in vivo demonstrated strong concordance and suggests there is potential for using tipping points for chemical prioritization.


Asunto(s)
Corteza Cerebral/efectos de los fármacos , Red Nerviosa/efectos de los fármacos , Neuronas/efectos de los fármacos , Síndromes de Neurotoxicidad/etiología , Animales , Animales Recién Nacidos , Corteza Cerebral/patología , Corteza Cerebral/fisiopatología , Relación Dosis-Respuesta a Droga , Potenciales de la Membrana/efectos de los fármacos , Microelectrodos , Red Nerviosa/patología , Neuronas/patología , Síndromes de Neurotoxicidad/patología , Síndromes de Neurotoxicidad/fisiopatología , Ratas , Medición de Riesgo , Factores de Tiempo , Técnicas de Cultivo de Tejidos , Pruebas de Toxicidad/instrumentación , Toxicocinética
12.
J Biochem Mol Toxicol ; 30(7): 331-41, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26918567

RESUMEN

Human HepG2 cells were exposed to six TiO2 nanomaterials (with dry primary particle sizes ranging from 22 to 214 nm, either 0.3, 3, or 30 µg/mL) for 3 days. Some of these canonical pathways changed by nano-TiO2 in vitro treatments have been already reported in the literature, such as NRF2-mediated stress response, fatty acid metabolism, cell cycle and apoptosis, immune response, cholesterol biosynthesis, and glycolysis. But this genomic study also revealed some novel effects such as protein synthesis, protein ubiquitination, hepatic fibrosis, and cancer-related signaling pathways. More importantly, this genomic analysis of nano-TiO2 treated HepG2 cells linked some of the in vitro canonical pathways to in vivo adverse outcomes: NRF2-mediated response pathways to oxidative stress, acute phase response to inflammation, cholesterol biosynthesis to steroid hormones alteration, fatty acid metabolism changes to lipid homeostasis alteration, G2/M cell checkpoint regulation to apoptosis, and hepatic fibrosis/stellate cell activation to liver fibrosis.


Asunto(s)
Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Redes y Vías Metabólicas/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Titanio/toxicidad , Apoptosis/genética , Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética , Carcinogénesis/inmunología , Ciclo Celular/genética , Colesterol/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/inmunología , Células Hep G2 , Humanos , Inmunidad Innata/efectos de los fármacos , Inmunidad Innata/genética , Cirrosis Hepática , Redes y Vías Metabólicas/genética , Redes y Vías Metabólicas/inmunología , Estrés Oxidativo , Tamaño de la Partícula , Transducción de Señal
13.
J Proteome Res ; 14(1): 183-92, 2015 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-25285964

RESUMEN

Chemical interactions have posed a big challenge in toxicity characterization and human health risk assessment of environmental mixtures. To characterize the impacts of chemical interactions on protein and cytotoxicity responses to environmental mixtures, we established a systems biology approach integrating proteomics, bioinformatics, statistics, and computational toxicology to measure expression or phosphorylation levels of 21 critical toxicity pathway regulators and 445 downstream proteins in human BEAS-2B cells treated with 4 concentrations of nickel, 2 concentrations each of cadmium and chromium, as well as 12 defined binary and 8 defined ternary mixtures of these metals in vitro. Multivariate statistical analysis and mathematical modeling of the metal-mediated proteomic response patterns showed a high correlation between changes in protein expression or phosphorylation and cellular toxic responses to both individual metals and metal mixtures. Of the identified correlated proteins, only a small set of proteins including HIF-1α is likely to be responsible for selective cytotoxic responses to different metals and metals mixtures. Furthermore, support vector machine learning was utilized to computationally predict protein responses to uncharacterized metal mixtures using experimentally generated protein response profiles corresponding to known metal mixtures. This study provides a novel proteomic approach for characterization and prediction of toxicities of metal and other chemical mixtures.


Asunto(s)
Cadmio/toxicidad , Cromo/toxicidad , Contaminantes Ambientales/toxicidad , Níquel/toxicidad , Proteoma/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular , Análisis por Conglomerados , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Expresión Génica/efectos de los fármacos , Gluconeogénesis/efectos de los fármacos , Glucólisis/efectos de los fármacos , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional , Proteoma/genética , Proteómica , Medición de Riesgo
14.
J Nanosci Nanotechnol ; 15(12): 9925-37, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26682436

RESUMEN

To investigate genomic effects, human liver hepatocellular carcinoma (HepG2) cells were exposed for three days to two different forms of nanoparticles both composed of CeO2 (0.3, 3 and 30 µg/mL). The two CeO2 nanoparticles had dry primary particle sizes of 8 nanometers {(M) made by NanoAmor} and 58 nanometers {(L) made by Alfa Aesar} and differ in various other physical-chemical properties as well. The smaller particle has stronger antioxidant properties, probably because it has higher Ce3+ levels on the particle surface, as well as more surface area per unit weight. Nanoparticle M showed a normal dose-response pattern with 363, 633 and 1273 differentially expressed genes (DEGs) at 0.3, 3 and 30 µg/mL, respectively. In contrast, nanoparticle L showed a puzzling dose-response pattern with the most DEGs found in the lowest exposure group with 1049, 303 and 323 DEGs at 0.3, 3 and 30 µg/mL, respectively. This systems biological genomic study showed that the major altered pathways by these two nano cerium oxides were protein synthesis, stress response, proliferation/cell cycle, cytoskeleton remodeling/actin polymerization and cellular metabolism. Some of the canonical pathways affected were mTOR signaling, EIF2 signaling, fatty acid activation, G2/M DNA damage checkpoint regulation, glycolysis and protein ubiquitination. These two CeO2 nanoparticles differed considerably in their genomic effects. M is more active than L in respect to altering the pathways of mitochondrial dysfunction, acute phase response, apoptosis, 14-3-3 mediated signaling, remodeling of epithelial adherens junction signaling, actin nucleation by ARP-WASP complex, altered TCA cycle and elevated fatty acid concentrations by metabolomics. However, L is more active than M in respect to the pathways of NRF2-mediated stress response and hepatic fibrosis/hepatic stellate cell activation. One major difference in the cell response to nano M and L is that nano M caused the Warburg effect while nano L did not.


Asunto(s)
Cerio/química , Nanopartículas/química , Transducción de Señal/efectos de los fármacos , Células Hep G2 , Humanos , Tamaño de la Partícula
15.
J Nanosci Nanotechnol ; 15(1): 492-503, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26328389

RESUMEN

The effect of titanium dioxide nanoparticles (nano-TiO2 Degussa p25) treatment of human lung epithelial cells (BEAS-2B) was examined by analyzing changes in messenger [mRNA] and microRNA [miRNA]. BEAS-2B cells were treated with 0, 3, 10, 30 or 100 µg/ml nano-TiO2 for 1 day (for mRNA analysis) or 3 days (for miRNA analysis). Differentially expressed mRNA and miRNA were analyzed using Affymetrix microarrays and Affymetrix miRNA microarrays, respectively. Although, the tested doses were not cytotoxic, there were alterations in both mRNA and miRNA expression. The expression of mRNA/miRNA changes were examined in MetaCore (GeneGo) and IPA (Ingenuity Pathway Analysis) to delineate associated canonical/signaling pathways. Canonical/signaling pathways altered by nano-TiO2 treatments included: cell cycle regulation, apoptosis, calcium signaling, translation, NRF2-mediated oxidative response, IGF1 signaling, RAS signaling, PI3K/AKT signaling, cytoskeleton remodeling, cell adhesion, BMP signaling, and inflammatory response. Many of the genes in these pathways are known to be regulated by the miRNAs whose expressions were altered by the nano-TiO2 treatment. The miRNA 17-92 cluster and let-7 miRNA family that are involved in lung cancer formation were altered by nano-TiO2 treatment. The miR-17-92 cluster, an oncogenic microRNA cluster, is induced while the tumor suppressor microRNA, let-7 family, is suppressed. The changes of let-7/KRAS signaling pathway was observed in all the doses treated. The observed changes in miRNA expression introduces an additional mechanistic dimension that supports the significance of the observed mRNA expression changes, and demonstrated that the nano-TiO2 in vitro treatment in human lung cells can cause diverse but coordinated pathway alterations associated with changes in in vivo response to tumorigenes.


Asunto(s)
Expresión Génica/efectos de los fármacos , MicroARNs/metabolismo , Nanopartículas/toxicidad , Mucosa Respiratoria/citología , Transducción de Señal/efectos de los fármacos , Titanio/toxicidad , Línea Celular , Humanos , MicroARNs/análisis , MicroARNs/genética
16.
Cell Genom ; 2(5)2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35754516

RESUMEN

The dilemma of how to categorize and classify diseases has been debated for centuries. The field of medical genetics has historically approached nosology based on clinical phenotypes observed in patients and families. Advances in genomic sequencing and understanding of genetic contributions to disease often provoke a need to reassess these classifications. The Clinical Genome Resource (ClinGen) has developed frameworks to classify the strength of evidence underlying monogenic gene-disease relationships, variant pathogenicity, and clinical actionability. It is therefore necessary to define the disease entity being evaluated, which can be challenging for genes associated with multiple conditions and/or a broad phenotypic spectrum. We therefore developed criteria to guide "lumping and splitting" decisions and improve consistency in defining monogenic gene-disease relationships. Here, we outline the precuration process, the lumping and splitting guidelines with examples, and describe the implications for clinical diagnosis, informatics, and care management.

17.
Proteomics ; 11(12): 2406-22, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21595037

RESUMEN

Oxidative stress is known to play important roles in engineered nanomaterial-induced cellular toxicity. However, the proteins and signaling pathways associated with the engineered nanomaterial-mediated oxidative stress and toxicity are largely unknown. To identify these toxicity pathways and networks that are associated with exposure to engineered nanomaterials, an integrated proteomic study was conducted using human bronchial epithelial cells, BEAS-2B and nanoscale titanium dioxide. Utilizing 2-DE and MS, we identified 46 proteins that were altered at protein expression levels. The protein changes detected by 2-DE/MS were verified by functional protein assays. These identified proteins include some key proteins involved in cellular stress response, metabolism, adhesion, cytoskeletal dynamics, cell growth, cell death, and cell signaling. The differentially expressed proteins were mapped using Ingenuity Pathway Analyses™ canonical pathways and Ingenuity Pathway Analyses tox lists to create protein-interacting networks and proteomic pathways. Twenty protein canonical pathways and tox lists were generated, and these pathways were compared to signaling pathways generated from genomic analyses of BEAS-2B cells treated with titanium dioxide. There was a significant overlap in the specific pathways and lists generated from the proteomic and the genomic data. In addition, we also analyzed the phosphorylation profiles of protein kinases in titanium dioxide-treated BEAS-2B cells for a better understanding of upstream signaling pathways in response to the titanium dioxide treatment and the induced oxidative stress. In summary, the present study provides the first protein-interacting network maps and novel insights into the biological responses and potential toxicity and detoxification pathways of titanium dioxide.


Asunto(s)
Bronquios/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Nanopartículas/toxicidad , Estrés Oxidativo/genética , Mapeo de Interacción de Proteínas , Proteínas Quinasas/metabolismo , Transducción de Señal/genética , Titanio/toxicidad , Apoptosis/efectos de los fármacos , Bronquios/citología , Bronquios/efectos de los fármacos , Línea Celular , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Electroforesis en Gel Bidimensional , Células Epiteliales/citología , Expresión Génica , Perfilación de la Expresión Génica , Humanos , Espectrometría de Masas , Estrés Oxidativo/efectos de los fármacos , Fosforilación/efectos de los fármacos , Proteínas Quinasas/genética , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteoma/análisis , Proteómica/métodos , Transducción de Señal/efectos de los fármacos
18.
Toxicol Sci ; 180(2): 295-312, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33537736

RESUMEN

Assessment of neuroactive effects of chemicals in cell-based assays remains challenging as complex functional tissue is required for biologically relevant readouts. Recent in vitro models using rodent primary neural cultures grown on multielectrode arrays allow quantitative measurements of neural network activity suitable for neurotoxicity screening. However, robust systems for testing effects on network function in human neural models are still lacking. The increasing number of differentiation protocols for generating neurons from human-induced pluripotent stem cells (hiPSCs) holds great potential to overcome the unavailability of human primary tissue and expedite cell-based assays. Yet, the variability in neuronal activity, prolonged ontogeny and rather immature stage of most neuronal cells derived by standard differentiation techniques greatly limit their utility for screening neurotoxic effects on human neural networks. Here, we used excitatory and inhibitory neurons, separately generated by direct reprogramming from hiPSCs, together with primary human astrocytes to establish highly functional cultures with defined cell ratios. Such neuron/glia cocultures exhibited pronounced neuronal activity and robust formation of synchronized network activity on multielectrode arrays, albeit with noticeable delay compared with primary rat cortical cultures. We further investigated acute changes of network activity in human neuron/glia cocultures and rat primary cortical cultures in response to compounds with known adverse neuroactive effects, including gamma amino butyric acid receptor antagonists and multiple pesticides. Importantly, we observed largely corresponding concentration-dependent effects on multiple neural network activity metrics using both neural culture types. These results demonstrate the utility of directly converted neuronal cells from hiPSCs for functional neurotoxicity screening of environmental chemicals.


Asunto(s)
Células Madre Pluripotentes Inducidas , Roedores , Animales , Astrocitos , Diferenciación Celular , Células Cultivadas , Humanos , Neuronas , Ratas
19.
J Nanosci Nanotechnol ; 20(9): 5833-5858, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32331190

RESUMEN

In dose-response and structure-activity studies, human hepatic HepG2 cells were exposed to between 0.01 and 300 ug/ml of different silver nanomaterials and AgNO3 for 3 days. Treatment chemicals included a custom synthesized rod shaped nano Ag, a glutathione capped nano Ag, polyvinylpyrrolidone (PVP) capped nano Ag (75 nm) from Nanocomposix and AgNO3. Various biochemical parameters were then evaluated to study cytotoxicity, cell growth, hepatic function and oxidative stress. Few indications of cytotoxicity were observed between 0.1 ug/ml and 6 ug/ml of any nano Ag. At 10 ug/ml and above, Ag containing nanomaterials caused a moderate to severe degree of cytotoxicity in HepG2 cells. Lactate dehydrogenase and aspartate transaminase activity alterations were the most sensitive cytotoxicity parameters. Some biochemical parameters were altered by exposures to both nano Ag and AgNO3 (statistically significant increases in alkaline phosphatase, gamma glutamyltranspeptidase, glutathione peroxidase and triglycerides; in contrast both glutathione reductase and HepG2 protein concentration were both decreased). Three parameters were significantly altered by nano Ag but not by AgNO3 (decreases in glucose 6-phosphate dehydrogenase and thioredoxin reductase and increases in catalase). Cytotoxicity per se did not appear to fully explain the patterns of biological responses observed. Some of the observations with the three nano Ag (increases in alkaline phosphatase, catalase, gamma glutamyltranspeptidase, as well as decreases in glucose 6-phosphate dehydrogenase and glutathione reductase) are in the same direction as HepG2 responses to other nanomaterials composed of TiO2, CeO2, SiO2, CuO and Cu. Therefore, these biochemical responses may be due to micropinocytosis of nanomaterials, membrane damage, oxidative stress and/or cytotoxicity. Decreased G6PDH (by all three nano Ag forms) and GRD activity (only nano Ag R did not cause decreases) support and are consistent with the oxidative stress theory of Ag nanomaterial action.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas del Metal , Nanoestructuras , Células Hep G2 , Humanos , Nanopartículas del Metal/toxicidad , Estrés Oxidativo , Dióxido de Silicio , Plata/toxicidad
20.
Toxicol Sci ; 169(2): 436-455, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30816951

RESUMEN

Thousands of chemicals to which humans are potentially exposed have not been evaluated for potential developmental neurotoxicity (DNT), driving efforts to develop a battery of in vitro screening approaches for DNT hazard. Here, 136 unique chemicals were evaluated for potential DNT hazard using a network formation assay (NFA) in cortical cells grown on microelectrode arrays. The effects of chemical exposure from 2 h postplating through 12 days in vitro (DIV) on network formation were evaluated at DIV 5, 7, 9, and 12, with cell viability assessed at DIV 12. Only 82 chemicals altered at least 1 network development parameter. Assay results were reproducible; 10 chemicals tested as biological replicates yielded qualitative results that were 100% concordant, with consistent potency values. Toxicological tipping points were determined for 58 chemicals and were similar to or lower than the lowest 50% effect concentrations (EC50) for all parameters. When EC50 and tipping point values from the NFA were compared to the range of potencies observed in ToxCast assays, the NFA EC50 values were less than the lower quartile for ToxCast assay potencies for a subset of chemicals, many of which are acutely neurotoxic in vivo. For 13 chemicals with available in vivo DNT data, estimated administered equivalent doses based on NFA results were similar to or lower than administered doses in vivo. Collectively, these results indicate that the NFA is sensitive to chemicals acting on nervous system function and will be a valuable contribution to an in vitro DNT screening battery.


Asunto(s)
Corteza Cerebral/efectos de los fármacos , Feto/efectos de los fármacos , Microelectrodos , Red Nerviosa/efectos de los fármacos , Neuronas/efectos de los fármacos , Síndromes de Neurotoxicidad/etiología , Células Cultivadas , Retardadores de Llama/toxicidad , Humanos , Metales/toxicidad , Plaguicidas/toxicidad , Hidrocarburos Policíclicos Aromáticos/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA