Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Plant J ; 114(3): 699-718, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36811359

RESUMEN

Land plants comprise two large monophyletic lineages, the vascular plants and the bryophytes, which diverged from their most recent common ancestor approximately 480 million years ago. Of the three lineages of bryophytes, only the mosses and the liverworts are systematically investigated, while the hornworts are understudied. Despite their importance for understanding fundamental questions of land plant evolution, they only recently became amenable to experimental investigation, with Anthoceros agrestis being developed as a hornwort model system. Availability of a high-quality genome assembly and a recently developed genetic transformation technique makes A. agrestis an attractive model species for hornworts. Here we describe an updated and optimized transformation protocol for A. agrestis, which can be successfully used to genetically modify one more strain of A. agrestis and three more hornwort species, Anthoceros punctatus, Leiosporoceros dussii, and Phaeoceros carolinianus. The new transformation method is less laborious, faster, and results in the generation of greatly increased numbers of transformants compared with the previous method. We have also developed a new selection marker for transformation. Finally, we report the development of a set of different cellular localization signal peptides for hornworts providing new tools to better understand the hornwort cell biology.


Asunto(s)
Anthocerotophyta , Briófitas , Embryophyta , Anthocerotophyta/genética , Filogenia , Briófitas/genética , Semillas
2.
Plant J ; 101(6): 1378-1396, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31692190

RESUMEN

Marchantia polymorpha has recently become a prime model for cellular, evo-devo, synthetic biological, and evolutionary investigations. We present a pseudomolecule-scale assembly of the M. polymorpha genome, making comparative genome structure analysis and classical genetic mapping approaches feasible. We anchored 88% of the M. polymorpha draft genome to a high-density linkage map resulting in eight pseudomolecules. We found that the overall genome structure of M. polymorpha is in some respects different from that of the model moss Physcomitrella patens. Specifically, genome collinearity between the two bryophyte genomes and vascular plants is limited, suggesting extensive rearrangements since divergence. Furthermore, recombination rates are greatest in the middle of the chromosome arms in M. polymorpha like in most vascular plant genomes, which is in contrast with P. patens where recombination rates are evenly distributed along the chromosomes. Nevertheless, some other properties of the genome are shared with P. patens. As in P. patens, DNA methylation in M. polymorpha is spread evenly along the chromosomes, which is in stark contrast with the angiosperm model Arabidopsis thaliana, where DNA methylation is strongly enriched at the centromeres. Nevertheless, DNA methylation and recombination rate are anticorrelated in all three species. Finally, M. polymorpha and P. patens centromeres are of similar structure and marked by high abundance of retroelements unlike in vascular plants. Taken together, the highly contiguous genome assembly we present opens unexplored avenues for M. polymorpha research by linking the physical and genetic maps, making novel genomic and genetic analyses, including map-based cloning, feasible.


Asunto(s)
Genoma de Planta/genética , Marchantia/genética , Centrómero/genética , Mapeo Cromosómico/métodos , Cromosomas de las Plantas/genética , Genes de Plantas/genética , Ligamiento Genético , Modelos Genéticos , Recombinación Genética/genética , Secuencias Repetidas en Tándem/genética
3.
New Phytol ; 229(2): 735-754, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32790880

RESUMEN

Extant land plants consist of two deeply divergent groups, tracheophytes and bryophytes, which shared a common ancestor some 500 million years ago. While information about vascular plants and the two of the three lineages of bryophytes, the mosses and liverworts, is steadily accumulating, the biology of hornworts remains poorly explored. Yet, as the sister group to liverworts and mosses, hornworts are critical in understanding the evolution of key land plant traits. Until recently, there was no hornwort model species amenable to systematic experimental investigation, which hampered detailed insight into the molecular biology and genetics of this unique group of land plants. The emerging hornwort model species, Anthoceros agrestis, is instrumental in our efforts to better understand not only hornwort biology but also fundamental questions of land plant evolution. To this end, here we provide an overview of hornwort biology and current research on the model plant A. agrestis to highlight its potential in answering key questions of land plant biology and evolution.


Asunto(s)
Anthocerotophyta , Briófitas , Embryophyta , Anthocerotophyta/genética , Briófitas/genética , Embryophyta/genética , Evolución Molecular , Filogenia , Plantas
4.
New Phytol ; 232(3): 1488-1505, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34076270

RESUMEN

Despite their key phylogenetic position and their unique biology, hornworts have been widely overlooked. Until recently there was no hornwort model species amenable to systematic experimental investigation. Anthoceros agrestis has been proposed as the model species to study hornwort biology. We have developed an Agrobacterium-mediated method for the stable transformation of A. agrestis, a hornwort model species for which a genetic manipulation technique was not yet available. High transformation efficiency was achieved by using thallus tissue grown under low light conditions. We generated a total of 274 transgenic A. agrestis lines expressing the ß-glucuronidase (GUS), cyan, green, and yellow fluorescent proteins under control of the CaMV 35S promoter and several endogenous promoters. Nuclear and plasma membrane localization with multiple color fluorescent proteins was also confirmed. The transformation technique described here should pave the way for detailed molecular and genetic studies of hornwort biology, providing much needed insight into the molecular mechanisms underlying symbiosis, carbon-concentrating mechanism, RNA editing and land plant evolution in general.


Asunto(s)
Anthocerotophyta , Embryophyta , Agrobacterium/genética , Glucuronidasa , Filogenia , Edición de ARN , Transformación Genética
5.
PLoS Genet ; 10(7): e1004476, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25010342

RESUMEN

Seeds of flowering plants can be formed sexually or asexually through apomixis. Apomixis occurs in about 400 species and is of great interest for agriculture as it produces clonal offspring. It differs from sexual reproduction in three major aspects: (1) While the sexual megaspore mother cell (MMC) undergoes meiosis, the apomictic initial cell (AIC) omits or aborts meiosis (apomeiosis); (2) the unreduced egg cell of apomicts forms an embryo without fertilization (parthenogenesis); and (3) the formation of functional endosperm requires specific developmental adaptations. Currently, our knowledge about the gene regulatory programs underlying apomixis is scarce. We used the apomict Boechera gunnisoniana, a close relative of Arabidopsis thaliana, to investigate the transcriptional basis underlying apomeiosis and parthenogenesis. Here, we present the first comprehensive reference transcriptome for reproductive development in an apomict. To compare sexual and apomictic development at the cellular level, we used laser-assisted microdissection combined with microarray and RNA-Seq analyses. Conservation of enriched gene ontologies between the AIC and the MMC likely reflects functions of importance to germline initiation, illustrating the close developmental relationship of sexuality and apomixis. However, several regulatory pathways differ between sexual and apomictic germlines, including cell cycle control, hormonal pathways, epigenetic and transcriptional regulation. Enrichment of specific signal transduction pathways are a feature of the apomictic germline, as is spermidine metabolism, which is associated with somatic embryogenesis in various plants. Our study provides a comprehensive reference dataset for apomictic development and yields important new insights into the transcriptional basis underlying apomixis in relation to sexual reproduction.


Asunto(s)
Apomixis/genética , Arabidopsis/genética , Desarrollo Sexual/genética , Transcripción Genética , Arabidopsis/crecimiento & desarrollo , Ciclo Celular/genética , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Células Germinativas/crecimiento & desarrollo , Meiosis/genética , Reproducción/genética , Semillas/genética , Semillas/crecimiento & desarrollo
6.
Front Plant Sci ; 14: 1108027, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36968370

RESUMEN

The hornworts are a small group of land plants, consisting of only 11 families and approximately 220 species. Despite their small size as a group, their phylogenetic position and unique biology are of great importance. Hornworts, together with mosses and liverworts, form the monophyletic group of bryophytes that is sister to all other land plants (Tracheophytes). It is only recently that hornworts became amenable to experimental investigation with the establishment of Anthoceros agrestis as a model system. In this perspective, we summarize the recent advances in the development of A. agrestis as an experimental system and compare it with other plant model systems. We also discuss how A. agrestis can help to further research in comparative developmental studies across land plants and to solve key questions of plant biology associated with the colonization of the terrestrial environment. Finally, we explore the significance of A. agrestis in crop improvement and synthetic biology applications in general.

7.
Appl Plant Sci ; 10(2): e11456, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35495192

RESUMEN

Premise: A detailed protocol for the protoplast transformation of hornwort tissue is not yet available, limiting molecular biological investigations of these plants and comparative analyses with other bryophytes, which display a gametophyte-dominant life cycle and are critical to understanding the evolution of key land plant traits. Methods and Results: We describe a detailed protocol to isolate and transiently transform protoplasts of the model hornwort Anthoceros agrestis. The digestion of liquid cultures with Driselase yields a high number of viable protoplasts suitable for polyethylene glycol (PEG)-mediated transformation. We also report early signs of protoplast regeneration, such as chloroplast division and cell wall reconstitution. Conclusions: This protocol represents a straightforward method for isolating and transforming A. agrestis protoplasts that is less laborious than previously described approaches. In combination with the recently developed stable genome transformation technique, this work further expands the prospects of functional studies in this model hornwort.

8.
J Natl Cancer Inst ; 114(2): 203-209, 2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-34453830

RESUMEN

BACKGROUND: Activity and safety of the SARS-CoV-2 BNT162b2 vaccine in actively treated patients with solid tumors is currently unknown. METHODS: We conducted a retrospective study of 326 patients with solid tumors treated with anticancer medications to determine the proportion of cancer patients with immunogenicity against SARS-CoV-2 following 2 doses of the BNT162b2 vaccine. The control group comprised 164 vaccinated healthy adults. Anti-SARS-CoV-2 S immunoglobulin G antibodies were measured using a level greater than 50 AU/mL as a cutoff for seropositivity. Information on adverse effects was collected using a questionnaire. All statistical tests were 2-sided. RESULTS: Most patients (205, 62.9%) were treated with chemotherapy either alone or with additional therapy; 55 (16.9%) were treated with immune checkpoint inhibitors and 38 (11.7%) with targeted therapy alone; 28 (8.6%) received other combinations. The vaccine was well tolerated, and no severe side effects were reported. Among patients with cancer, 39 (11.9%) were seronegative compared with 5 (3.0%) of the control group (P = .001). Median immunoglobulin G titers were statistically significantly lower among patients with cancer compared with control (931 AU/mL vs 2817 AU/mL, P = .003). Seronegativity proportions were higher in the chemotherapy-treated group (n = 19; 18.8%) compared with the immune checkpoint inhibitor-treated patients (n = 5; 9.1%) and with those treated with targeted therapy (n = 1; 2.6%) (P = .02). Titers were also statistically significantly different among treatment types (P = .002). CONCLUSIONS: The BNT162b2 vaccine is safe and effective in actively treated patients with cancer. The relatively lower antibody titers and lower proportion of seropositive patients, especially among chemotherapy-treated patients, call for continuing the use of personal protective measures in these patients, even following vaccination.


Asunto(s)
COVID-19 , Neoplasias , Adulto , Anticuerpos Antivirales , Vacuna BNT162 , Vacunas contra la COVID-19 , Humanos , Inmunogenicidad Vacunal , Neoplasias/tratamiento farmacológico , Estudios Prospectivos , ARN Mensajero , Estudios Retrospectivos , SARS-CoV-2
9.
Front Plant Sci ; 11: 747, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32587596

RESUMEN

Understanding the molecular basis of morphological shifts is a fundamental question of evolutionary biology. New morphologies may arise through the birth/death of genes (gene gain/loss) or by reutilizing existing gene sets. Yet, the relative contribution of these two processes to radical morphological shifts is still poorly understood. Here, we use the model system of two mosses, Funaria hygrometrica and Physcomitrium (Physcomitrella) patens, to investigate the molecular mechanisms underlying contrasting sporophyte architectures. We used comparative analysis of time-series expression data for four stages of sporophyte development in both species to address this question in detail. We found that large-scale differences in sporophytic architecture are mainly governed by orthologous (i.e., shared) genes frequently experiencing temporal gene expression shifts between the two species. While the absolute number of species-specific genes expressed during sporophyte development is somewhat smaller, we observed a significant increase of their proportion in preferentially sporophyte expressed genes, suggesting a fundamental role in the sporophyte phase. However, further functional studies are necessary to determine their contribution to diverging sporophyte morphologies. Our results add to the growing set of studies suggesting that radical changes in morphology may rely on the heterochronic expression of conserved regulators.

10.
Nat Plants ; 6(3): 259-272, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32170292

RESUMEN

Hornworts comprise a bryophyte lineage that diverged from other extant land plants >400 million years ago and bears unique biological features, including a distinct sporophyte architecture, cyanobacterial symbiosis and a pyrenoid-based carbon-concentrating mechanism (CCM). Here, we provide three high-quality genomes of Anthoceros hornworts. Phylogenomic analyses place hornworts as a sister clade to liverworts plus mosses with high support. The Anthoceros genomes lack repeat-dense centromeres as well as whole-genome duplication, and contain a limited transcription factor repertoire. Several genes involved in angiosperm meristem and stomatal function are conserved in Anthoceros and upregulated during sporophyte development, suggesting possible homologies at the genetic level. We identified candidate genes involved in cyanobacterial symbiosis and found that LCIB, a Chlamydomonas CCM gene, is present in hornworts but absent in other plant lineages, implying a possible conserved role in CCM function. We anticipate that these hornwort genomes will serve as essential references for future hornwort research and comparative studies across land plants.


Asunto(s)
Anthocerotophyta/genética , Evolución Biológica , Embryophyta/fisiología , Genoma de Planta , Rasgos de la Historia de Vida
11.
Curr Top Dev Biol ; 131: 1-34, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30612613

RESUMEN

Land plants evolved about 470 million years ago or even earlier, in a biological crust-dominated terrestrial flora. The origin of land plants was probably one of the most significant events in Earth's history, which ultimately contributed to the greening of the terrestrial environment and opened up the way for the diversification of both plant and non-plant lineages. Fossil and phylogenetic evidence suggest that land plants have evolved from fresh-water charophycean algae, which were physiologically, genetically, and developmentally potentiated to make the transition to land. Since all land plants have biphasic life cycles, in contrast to the haplontic life cycle of Charophytes, the evolution of land plants was linked to the origin of a multicellular sporophytic phase. Land plants have evolved complex body plans in a way that overall complexity increased toward the tip of the land plant tree of life. Early forms were unbranched, with terminal sporangia and simple rhizoid rooting structures but without vasculature and leaves. Later on, branched forms with lateral sporangia appeared and paved the route for the evolution for indeterminacy. Finally, leaves and roots evolved to enable efficient nutrient transport to support a large plant body. The fossil record also suggests that almost all plant organs, such as leaves and roots, evolved multiple times independently over the course of land plant evolution. In this review, we summarize the current knowledge on the evolution of the land plant body plan by combining evidence of the fossil record, phylogenetics, and developmental biology.


Asunto(s)
Evolución Biológica , Embryophyta/crecimiento & desarrollo , Hojas de la Planta/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo , Embryophyta/genética , Filogenia , Hojas de la Planta/genética , Raíces de Plantas/genética
12.
Curr Biol ; 28(15): 2365-2376.e5, 2018 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-30033333

RESUMEN

How genes shape diverse plant and animal body forms is a key question in biology. Unlike animal cells, plant cells are confined by rigid cell walls, and cell division plane orientation and growth rather than cell movement determine overall body form. The emergence of plants on land coincided with a new capacity to rotate stem cell divisions through multiple planes, and this enabled three-dimensional (3D) forms to arise from ancestral forms constrained to 2D growth. The genes involved in this evolutionary innovation are largely unknown. The evolution of 3D growth is recapitulated during the development of modern mosses when leafy shoots arise from a filamentous (2D) precursor tissue. Here, we show that a conserved, CLAVATA peptide and receptor-like kinase pathway originated with land plants and orients stem cell division planes during the transition from 2D to 3D growth in a moss, Physcomitrella. We find that this newly identified role for CLAVATA in regulating cell division plane orientation is shared between Physcomitrella and Arabidopsis. We report that roles for CLAVATA in regulating cell proliferation and cell fate are also shared and that CLAVATA-like peptides act via conserved receptor components in Physcomitrella. Our results suggest that CLAVATA was a genetic novelty enabling the morphological innovation of 3D growth in land plants.


Asunto(s)
Bryopsida/genética , Proliferación Celular/genética , Evolución Molecular , Proteínas de Plantas/genética , Evolución Biológica , Bryopsida/crecimiento & desarrollo , Bryopsida/metabolismo , Proteínas de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA