Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Phys Chem A ; 114(4): 1709-21, 2010 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-20063874

RESUMEN

A series of Zn(II) porphyrin (ZnP) compounds covalently linked to different electron acceptor units, naphthaleneimide (NI) and naphthalenediimide (NDI), are reported. The aim was to demonstrate a state-selective direction of electron transfer, where excitation to the lowest excited S(1) state of the porphyrin (Q-band excitation) would give electron transfer to the NDI unit, while excitation to the higher S(2) state (Soret-band excitation) would give electron transfer to the NI unit. This would constitute a basis for an opto-electronic switch in which the direction of electron transfer and the resulting dipole moment can be controlled by using light input of different color. Indeed, electron transfer from the S(1) state to NDI occurred in solvents of both high and low polarity, whereas no electron transfer to NDI was observed from the S(2) state. With NI as acceptor instead, very rapid (tau = 200-400 fs) electron transfer from the S(2) state occurred in all solvents. This was followed by an ultrafast (tau approximately 100 fs) recombination to populate the porphyrin S(1) state in nearly quantitative yield. The charge-separated state ZnP(+)NI(-) was spectroscopically observed, and evidence was obtained that recombination occurred from a vibrationally excited ("hot") ZnP(+)NI(-) state in the more polar solvents. In these solvents, the thermally relaxed ZnP(+)NI(-) state lies at lower energy than the S(1) state so that further charge separation occurred from S(1) to form ZnP(+)NI(-). This resulted in a highly unusual "ping-pong" sequence where the reaction went back and forth between locally excited ZnP states and charge-separated states: S(2) --> ZnP(+)NI(-)("hot") --> S(1) --> ZnP(+)NI(-) --> S(0). The electron transfer dynamics and its solvent dependence are discussed, as well as the function of the present molecules as molecular switches.

2.
Photochem Photobiol Sci ; 5(9): 828-34, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17047835

RESUMEN

The photophysical and spectroscopic properties of a series of bis-porphyrin compounds meso-meso-linked via oligothiophene bridges are reported. In particular the effects of the different bridges on the porphyrin properties as well as their ability to enhance energy transfer is investigated. The main findings are: a splitting of the degeneracy of the porphyrin Soret band transition with a lower energy transition aligned along the bridge, a dramatic decrease in triplet lifetime and the occurrence of "superexchange" as the main mechanism for mediating singlet-singlet energy transfer in the case where the bridge is a quaterthiophene. Our results show significant perturbations of the intrinsic porphyrin properties induced by the bridge, which are important for the function of porphyrin assemblies.

3.
J Phys Chem A ; 109(21): 4697-704, 2005 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-16833810

RESUMEN

It is known that the relaxed excited state of [Ru(bpy)3]2+ is best described as a metal to ligand charge transfer (MLCT) state having one formally reduced bipyridine and two neutral. Previous reports have suggested [Malone, R. et al. J. Chem. Phys. 1991, 95, 8970] that the electron "hops" from ligand to ligand in the MLCT state with a time constant of about 50 ps in acetonitrile. However, we have done transient absorption anisotropy measurements indicating that already after one picosecond the molecule has no memory of which bipyridine was initially photoselected, which suggests an ultrafast interligand randomization of the MLCT state.

4.
Inorg Chem ; 44(13): 4806-17, 2005 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-15962989

RESUMEN

A series of six new dyads consisting of a zinc or magnesium porphyrin appended to a platinum terpyridine acetylide complex via a para-phenylene bisacetylene spacer are described. Different substituents on the 4' position of the terpyridinyl ligand were explored (OC7H15, PO3Et2, and H). The ground-state electronic properties of the dyads are studied by electronic absorption spectroscopy and electrochemistry, and they indicate some electronic interactions between the porphyrin subunit and the platinum complex. The photophysical properties of these dyads were investigated by steady-state, time-resolved, and femtosecond transient absorption spectroscopy in N,N-dimethylformamide solution. Excitation of the porphyrin unit leads to a very rapid electron transfer (2-20 ps) to the nearby platinum complex followed by an ultrafast charge recombination, thus preventing any observation of the charge separated state. The variation in the rate of the photoinduced electron transfer in the series of dyads is consistent with Marcus theory. The results underscore the potential of the para-phenylene bisacetylene bridge to mediate a rapid electron transfer over a long donor-acceptor distance.

5.
Inorg Chem ; 42(17): 5173-84, 2003 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-12924888

RESUMEN

Two electron donor-acceptor triads based on a benzoquinone acceptor linked to a light absorbing [Ru(bpy)(3)](2+) complex have been synthesized. In triad 6 (denoted Ru(II)-BQ-Co(III)), a [Co(bpy)(3)](3+) complex, a potential secondary acceptor, was linked to the quinone. In the other triad, 8 (denoted PTZ-Ru(II)-BQ), a phenothiazine donor was linked to the ruthenium moiety. The corresponding dyads Ru(II)-BQ (4) and PTZ-Ru(II) (9) were prepared for comparison. Upon light excitation in the visible band of the ruthenium moiety, electron transfer to the quinone occurred with a rate constant k(f) = 5 x 10(9) s(-)(1) (tau(f) = 200 ps) in all the quinone containing complexes. Recombination to the ground state followed, with a rate constant k(b) approximately 4.5 x 10(8) s(-)(1) (tau(b) approximately 2.2 ns), for both Ru(II)-BQ and Ru(II)-BQ-Co(III) with no indication of a charge shift to generate the reduced Co(II) moiety. In the PTZ-Ru(II)-BQ triad, however, the initial charge separation was followed by a rapid (k > 5 x 10(9) s(-)(1)) electron transfer from the phenothiazine moiety to give the fairly long-lived PTZ(*)(+)-Ru(II)-BQ(*)(-) state (tau = 80 ns) in unusually high yield for a [Ru(bpy)(3)](2+)-based triad (> 90%), that lies at DeltaG degrees = 1.32 eV relative to the ground state. Unfortunately, this triad turned out to be rather photolabile. Interestingly, coupling between the oxidized PTZ(*)(+) and the BQ(*)(-) moieties seemed to occur. This discouraged further extension to incorporate more redox active units. Finally, in the dyad PTZ-Ru(II) a reversible, near isoergonic electron transfer was observed on excitation. Thus, a quasiequilibrium was established with an observed time constant of 7 ns, with ca. 82% of the population in the PTZ-Ru(II) state and 18% in the PTZ(*)(+)-Ru(II)(bpy(*)(-)) state. These states decayed in parallel with an observed lifetime of 90 ns. The initial electron transfer to form the PTZ(*)(+)-Ru(II)(bpy(*)(-)) state was thus faster than what would have been inferred from the Ru(II) emission decay (tau = 90 ns). This result suggests that reports for related PTZ-Ru(II) and PTZ-Ru(II)-acceptor complexes in the literature might need to be reconsidered.

6.
Chemistry ; 8(13): 3027-46, 2002 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-12489234

RESUMEN

A set of twelve porphyrin dimers has been prepared to give information on how the type of connectivity between a porphyrin core and a bridge can influence the interporphyrin electronic interaction. The new porphyrin systems are substituted directly at the meso position with an oligothiophene chain tethered either with a single C-C sigma bond, a trans ethylenyl group, or a acetylenyl group. The compounds are easily obtained by palladium-catalyzed cross-coupling reactions (Stille, Heck, and Sonogashira) between 5-iodo-10,15,20-(3,5-ditert-butylphenyl)porphyrin and the appropriate oligothiophene derivative. This synthetic approach is straightforward and very effective for preparing oligothiophene-based prophyrin systems. The absorption spectra and the fluorescence properties of the dimers demonstrated the crucial importance of the characteristics of the chemical bond used to connect the bridge to the porphyrin unit. The magnitude of the electronic communication can thus be significantly modulated by altering the type of bond connectivity used to link the chromophore to the bridge. The present work shows that an oligothiophene spacer is a viable class of linker for connecting porphyrins, and that a quaterthiophene appended with ethynyl linkages affords a high electronic interaction over a distance as large as 28 A. A detailed computational study of these dimers has clarified the conditions needed for a conjugated system to behave as a molecular wire. These conditions are full planarity of the molecule and proper energy matching between the frontier orbitals of the bridge and the porphyrin. Intermolecular energy transfer in asymmetrical dyads composed of a zinc porphyrin and a freebase porphyrin has been studied by fluorescence spectroscopy. In all systems, this process is more than 98% efficient, and its rate constant decreases steadily in the order 4ZH > 1ZH > 3ZH approximately 2ZH. Thus, the largest rate (kEnT = 1.2 x 10(11) s-1) was found in the dyad linked with bisethynyl quaterthiophene, which represents the longest bridge within the series. These results clearly demonstrate that strong communication and also efficient photoinduced processes can be promoted over a large distance if the electronic structure of the molecular connector is appropriately chosen.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA