Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 42(16): e112812, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37403793

RESUMEN

Intracellular organelle organization is conserved in eukaryotic cells and is primarily achieved through active transport by motor proteins along the microtubule cytoskeleton. Microtubule post-translational modifications (PTMs) can contribute to microtubule diversity and differentially regulate motor-mediated transport. Here, we show that centrosome amplification, commonly observed in cancer and shown to promote aneuploidy and invasion, induces a global change in organelle positioning towards the cell periphery and facilitates nuclear migration through confined spaces. This reorganization requires kinesin-1 and is analogous to the loss of dynein. Cells with amplified centrosomes display increased levels of acetylated tubulin, a PTM that could enhance kinesin-1-mediated transport. Depletion of α-tubulin acetyltransferase 1 (αTAT1) to block tubulin acetylation rescues the displacement of centrosomes, mitochondria, and vimentin but not Golgi or endosomes. Analyses of the distribution of total and acetylated microtubules indicate that the polarized distribution of modified microtubules, rather than levels alone, plays an important role in the positioning of specific organelles, such as the centrosome. We propose that increased tubulin acetylation differentially impacts kinesin-1-mediated organelle displacement to regulate intracellular organization.


Asunto(s)
Cinesinas , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Acetilación , Microtúbulos/metabolismo , Centrosoma/metabolismo , Dineínas/metabolismo , Procesamiento Proteico-Postraduccional
2.
Biomacromolecules ; 15(11): 4187-94, 2014 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-25251833

RESUMEN

Development of drug resistance is a central challenge to the treatment of ovarian cancer. Metronomic chemotherapy decreases the extent of drug-free periods, thereby hindering development of drug resistance. Intraperitoneal chemotherapy allows for treatment of tumors confined within the peritoneum, but achieving sustained tumor-localized chemotherapy remains difficult. We hypothesized that modulating the surface properties of poly(lactic-co-glycolic acid) (PLGA)-based nanoparticles could enhance their drug retention ability and extend their release profile, thereby enabling metronomic, localized chemotherapy in vivo. Paclitaxel was encapsulated in particles coated with a layer of polydopamine and a subsequent layer of poly(ethylene glycol) (PEG). These particles achieved a 3.8-fold higher loading content compared to that of nanoparticles formulated from linear PLGA-PEG copolymers. In vitro release kinetic studies and in vivo drug distribution profiles demonstrate sustained release of paclitaxel. Although free drug conferred no survival advantage, low-dose intraperitoneal administration of paclitaxel-laden surface-coated nanoparticles to drug-resistant ovarian tumor-bearing mice resulted in significant survival benefits in the absence of any apparent systemic toxicity.


Asunto(s)
Administración Metronómica , Modelos Animales de Enfermedad , Ácido Láctico/administración & dosificación , Nanopartículas/administración & dosificación , Neoplasias Ováricas/tratamiento farmacológico , Paclitaxel/administración & dosificación , Ácido Poliglicólico/administración & dosificación , Animales , Antineoplásicos Fitogénicos/administración & dosificación , Antineoplásicos Fitogénicos/química , Línea Celular Tumoral , Preparaciones de Acción Retardada/administración & dosificación , Preparaciones de Acción Retardada/química , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/química , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/fisiología , Femenino , Humanos , Ácido Láctico/química , Ratones , Nanopartículas/química , Neoplasias Ováricas/patología , Paclitaxel/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Propiedades de Superficie
3.
Dev Cell ; 56(23): 3192-3202.e8, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34818527

RESUMEN

Transient nuclear envelope ruptures during interphase (NERDI) occur due to cytoskeletal compressive forces at sites of weakened lamina, and delayed NERDI repair results in genomic instability. Nuclear envelope (NE) sealing is completed by endosomal sorting complex required for transport (ESCRT) machinery. A key unanswered question is how local compressive forces are counteracted to allow efficient membrane resealing. Here, we identify the ESCRT-associated protein BROX as a crucial factor required to accelerate repair of the NE. Critically, BROX binds Nesprin-2G, a component of the linker of nucleoskeleton and cytoskeleton complex (LINC). This interaction promotes Nesprin-2G ubiquitination and facilitates the relaxation of mechanical stress imposed by compressive actin fibers at the rupture site. Thus, BROX rebalances excessive cytoskeletal forces in cells experiencing NE instability to promote effective NERDI repair. Our results demonstrate that BROX coordinates mechanoregulation with membrane remodeling to ensure the maintenance of nuclear-cytoplasmic compartmentalization and genomic stability.


Asunto(s)
Núcleo Celular/fisiología , Citoesqueleto/química , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Membrana Nuclear/fisiología , Actinas/química , Movimiento Celular , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Células HeLa , Humanos , Fenómenos Mecánicos , Proteínas de Microfilamentos/genética , Proteínas del Tejido Nervioso/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA