Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.889
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 185(12): 2148-2163.e27, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35584702

RESUMEN

Zinc (Zn) is an essential micronutrient and cofactor for up to 10% of proteins in living organisms. During Zn limitation, specialized enzymes called metallochaperones are predicted to allocate Zn to specific metalloproteins. This function has been putatively assigned to G3E GTPase COG0523 proteins, yet no Zn metallochaperone has been experimentally identified in any organism. Here, we functionally characterize a family of COG0523 proteins that is conserved across vertebrates. We identify Zn metalloprotease methionine aminopeptidase 1 (METAP1) as a COG0523 client, leading to the redesignation of this group of COG0523 proteins as the Zn-regulated GTPase metalloprotein activator (ZNG1) family. Using biochemical, structural, genetic, and pharmacological approaches across evolutionarily divergent models, including zebrafish and mice, we demonstrate a critical role for ZNG1 proteins in regulating cellular Zn homeostasis. Collectively, these data reveal the existence of a family of Zn metallochaperones and assign ZNG1 an important role for intracellular Zn trafficking.


Asunto(s)
Metaloendopeptidasas/metabolismo , Zinc , Animales , GTP Fosfohidrolasas/metabolismo , Homeostasis , Metalochaperonas/metabolismo , Metaloproteínas/genética , Ratones , Pez Cebra/metabolismo , Zinc/metabolismo
2.
Cell ; 171(4): 934-949.e16, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-29033130

RESUMEN

The mechanisms by which immune checkpoint blockade modulates tumor evolution during therapy are unclear. We assessed genomic changes in tumors from 68 patients with advanced melanoma, who progressed on ipilimumab or were ipilimumab-naive, before and after nivolumab initiation (CA209-038 study). Tumors were analyzed by whole-exome, transcriptome, and/or T cell receptor (TCR) sequencing. In responding patients, mutation and neoantigen load were reduced from baseline, and analysis of intratumoral heterogeneity during therapy demonstrated differential clonal evolution within tumors and putative selection against neoantigenic mutations on-therapy. Transcriptome analyses before and during nivolumab therapy revealed increases in distinct immune cell subsets, activation of specific transcriptional networks, and upregulation of immune checkpoint genes that were more pronounced in patients with response. Temporal changes in intratumoral TCR repertoire revealed expansion of T cell clones in the setting of neoantigen loss. Comprehensive genomic profiling data in this study provide insight into nivolumab's mechanism of action.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Antineoplásicos/uso terapéutico , Inmunoterapia , Melanoma/terapia , Microambiente Tumoral , Estudio de Asociación del Genoma Completo , Humanos , Melanoma/genética , Melanoma/inmunología , Nivolumab , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Linfocitos T , Transcriptoma
3.
Cell ; 171(5): 1042-1056.e10, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29056344

RESUMEN

We present an extensive assessment of mutation burden through sequencing analysis of >81,000 tumors from pediatric and adult patients, including tumors with hypermutation caused by chemotherapy, carcinogens, or germline alterations. Hypermutation was detected in tumor types not previously associated with high mutation burden. Replication repair deficiency was a major contributing factor. We uncovered new driver mutations in the replication-repair-associated DNA polymerases and a distinct impact of microsatellite instability and replication repair deficiency on the scale of mutation load. Unbiased clustering, based on mutational context, revealed clinically relevant subgroups regardless of the tumors' tissue of origin, highlighting similarities in evolutionary dynamics leading to hypermutation. Mutagens, such as UV light, were implicated in unexpected cancers, including sarcomas and lung tumors. The order of mutational signatures identified previous treatment and germline replication repair deficiency, which improved management of patients and families. These data will inform tumor classification, genetic testing, and clinical trial design.


Asunto(s)
Neoplasias/genética , Adulto , Niño , Análisis por Conglomerados , ADN Polimerasa II/genética , ADN Polimerasa III/genética , Replicación del ADN , Humanos , Mutación , Neoplasias/clasificación , Neoplasias/patología , Neoplasias/terapia , Proteínas de Unión a Poli-ADP-Ribosa/genética
4.
Nature ; 623(7986): 324-328, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37938708

RESUMEN

The physicochemical properties of molecular crystals, such as solubility, stability, compactability, melting behaviour and bioavailability, depend on their crystal form1. In silico crystal form selection has recently come much closer to realization because of the development of accurate and affordable free-energy calculations2-4. Here we redefine the state of the art, primarily by improving the accuracy of free-energy calculations, constructing a reliable experimental benchmark for solid-solid free-energy differences, quantifying statistical errors for the computed free energies and placing both hydrate crystal structures of different stoichiometries and anhydrate crystal structures on the same energy landscape, with defined error bars, as a function of temperature and relative humidity. The calculated free energies have standard errors of 1-2 kJ mol-1 for industrially relevant compounds, and the method to place crystal structures with different hydrate stoichiometries on the same energy landscape can be extended to other multi-component systems, including solvates. These contributions reduce the gap between the needs of the experimentalist and the capabilities of modern computational tools, transforming crystal structure prediction into a more reliable and actionable procedure that can be used in combination with experimental evidence to direct crystal form selection and establish control5.

5.
Mol Cell ; 81(5): 1074-1083.e5, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33453169

RESUMEN

The RAD51 recombinase forms nucleoprotein filaments to promote double-strand break repair, replication fork reversal, and fork stabilization. The stability of these filaments is highly regulated, as both too little and too much RAD51 activity can cause genome instability. RADX is a single-strand DNA (ssDNA) binding protein that regulates DNA replication. Here, we define its mechanism of action. We find that RADX inhibits RAD51 strand exchange and D-loop formation activities. RADX directly and selectively interacts with ATP-bound RAD51, stimulates ATP hydrolysis, and destabilizes RAD51 nucleofilaments. The RADX interaction with RAD51, in addition to its ssDNA binding capability, is required to maintain replication fork elongation rates and fork stability. Furthermore, BRCA2 can overcome the RADX-dependent RAD51 inhibition. Thus, RADX functions in opposition to BRCA2 in regulating RAD51 nucleofilament stability to ensure the right level of RAD51 function during DNA replication.


Asunto(s)
Proteína BRCA2/genética , Replicación del ADN , ADN de Cadena Simple/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ARN/genética , Recombinasa Rad51/genética , Adenosina Trifosfato/metabolismo , Proteína BRCA2/metabolismo , Línea Celular Tumoral , ADN/genética , ADN/metabolismo , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Hidrólisis , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Proteínas de Unión al ARN/metabolismo , Recombinasa Rad51/metabolismo , Transducción de Señal , Imagen Individual de Molécula , Proteína Fluorescente Roja
6.
Mol Cell ; 81(14): 2989-3006.e9, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34197737

RESUMEN

Stalled DNA replication fork restart after stress as orchestrated by ATR kinase, BLM helicase, and structure-specific nucleases enables replication, cell survival, and genome stability. Here we unveil human exonuclease V (EXO5) as an ATR-regulated DNA structure-specific nuclease and BLM partner for replication fork restart. We find that elevated EXO5 in tumors correlates with increased mutation loads and poor patient survival, suggesting that EXO5 upregulation has oncogenic potential. Structural, mechanistic, and mutational analyses of EXO5 and EXO5-DNA complexes reveal a single-stranded DNA binding channel with an adjacent ATR phosphorylation motif (T88Q89) that regulates EXO5 nuclease activity and BLM binding identified by mass spectrometric analysis. EXO5 phospho-mimetic mutant rescues the restart defect from EXO5 depletion that decreases fork progression, DNA damage repair, and cell survival. EXO5 depletion furthermore rescues survival of FANCA-deficient cells and indicates EXO5 functions epistatically with SMARCAL1 and BLM. Thus, an EXO5 axis connects ATR and BLM in directing replication fork restart.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Replicación del ADN/genética , ADN/genética , Exonucleasas/genética , Inestabilidad Genómica/genética , RecQ Helicasas/genética , Línea Celular , Línea Celular Tumoral , Daño del ADN/genética , ADN Helicasas/genética , Análisis Mutacional de ADN/métodos , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Células HEK293 , Células HeLa , Humanos , Mutación/genética , Oncogenes/genética , Fosforilación/genética , Regulación hacia Arriba/genética
7.
Nature ; 603(7903): 885-892, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35165441

RESUMEN

The human brain vasculature is of great medical importance: its dysfunction causes disability and death1, and the specialized structure it forms-the blood-brain barrier-impedes the treatment of nearly all brain disorders2,3. Yet so far, we have no molecular map of the human brain vasculature. Here we develop vessel isolation and nuclei extraction for sequencing (VINE-seq) to profile the major vascular and perivascular cell types of the human brain through 143,793 single-nucleus transcriptomes from 25 hippocampus and cortex samples of 9 individuals with Alzheimer's disease and 8 individuals with no cognitive impairment. We identify brain-region- and species-enriched genes and pathways. We reveal molecular principles of human arteriovenous organization, recapitulating a gradual endothelial and punctuated mural cell continuum. We discover two subtypes of human pericytes, marked by solute transport and extracellular matrix (ECM) organization; and define perivascular versus meningeal fibroblast specialization. In Alzheimer's disease, we observe selective vulnerability of ECM-maintaining pericytes and gene expression patterns that implicate dysregulated blood flow. With an expanded survey of brain cell types, we find that 30 of the top 45 genes that have been linked to Alzheimer's disease risk by genome-wide association studies (GWASs) are expressed in the human brain vasculature, and we confirm this by immunostaining. Vascular GWAS genes map to endothelial protein transport, adaptive immune and ECM pathways. Many are microglia-specific in mice, suggesting a partial evolutionary transfer of Alzheimer's disease risk. Our work uncovers the molecular basis of the human brain vasculature, which will inform our understanding of overall brain health, disease and therapy.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Susceptibilidad a Enfermedades , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Animales , Encéfalo/irrigación sanguínea , Encéfalo/citología , Encéfalo/metabolismo , Corteza Cerebral/irrigación sanguínea , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Estudio de Asociación del Genoma Completo , Hipocampo/irrigación sanguínea , Hipocampo/citología , Hipocampo/metabolismo , Humanos , Ratones , Microglía/metabolismo , Pericitos/metabolismo , Transcriptoma
8.
Nature ; 595(7868): 565-571, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34153974

RESUMEN

Although SARS-CoV-2 primarily targets the respiratory system, patients with and survivors of COVID-19 can suffer neurological symptoms1-3. However, an unbiased understanding of the cellular and molecular processes that are affected in the brains of patients with COVID-19 is missing. Here we profile 65,309 single-nucleus transcriptomes from 30 frontal cortex and choroid plexus samples across 14 control individuals (including 1 patient with terminal influenza) and 8 patients with COVID-19. Although our systematic analysis yields no molecular traces of SARS-CoV-2 in the brain, we observe broad cellular perturbations indicating that barrier cells of the choroid plexus sense and relay peripheral inflammation into the brain and show that peripheral T cells infiltrate the parenchyma. We discover microglia and astrocyte subpopulations associated with COVID-19 that share features with pathological cell states that have previously been reported in human neurodegenerative disease4-6. Synaptic signalling of upper-layer excitatory neurons-which are evolutionarily expanded in humans7 and linked to cognitive function8-is preferentially affected in COVID-19. Across cell types, perturbations associated with COVID-19 overlap with those found in chronic brain disorders and reside in genetic variants associated with cognition, schizophrenia and depression. Our findings and public dataset provide a molecular framework to understand current observations of COVID-19-related neurological disease, and any such disease that may emerge at a later date.


Asunto(s)
Astrocitos/patología , Encéfalo/patología , COVID-19/diagnóstico , COVID-19/patología , Plexo Coroideo/patología , Microglía/patología , Neuronas/patología , Anciano , Anciano de 80 o más Años , Encéfalo/metabolismo , Encéfalo/fisiopatología , Encéfalo/virología , COVID-19/genética , COVID-19/fisiopatología , Núcleo Celular/genética , Plexo Coroideo/metabolismo , Plexo Coroideo/fisiopatología , Plexo Coroideo/virología , Femenino , Humanos , Inflamación/virología , Masculino , Persona de Mediana Edad , SARS-CoV-2/crecimiento & desarrollo , SARS-CoV-2/patogenicidad , Análisis de la Célula Individual , Transcriptoma , Replicación Viral
9.
Proc Natl Acad Sci U S A ; 121(12): e2316491121, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38466836

RESUMEN

Replication fork reversal is a fundamental process required for resolution of encounters with DNA damage. A key step in the stabilization and eventual resolution of reversed forks is formation of RAD51 nucleoprotein filaments on exposed single strand DNA (ssDNA). To avoid genome instability, RAD51 filaments are tightly controlled by a variety of positive and negative regulators. RADX (RPA-related RAD51-antagonist on the X chromosome) is a recently discovered negative regulator that binds tightly to ssDNA, directly interacts with RAD51, and regulates replication fork reversal and stabilization in a context-dependent manner. Here, we present a structure-based investigation of RADX's mechanism of action. Mass photometry experiments showed that RADX forms multiple oligomeric states in a concentration-dependent manner, with a predominance of trimers in the presence of ssDNA. The structure of RADX, which has no structurally characterized orthologs, was determined ab initio by cryo-electron microscopy (cryo-EM) from maps in the 2 to 4 Å range. The structure reveals the molecular basis for RADX oligomerization and the coupled multi-valent binding of ssDNA binding. The interaction of RADX with RAD51 filaments was imaged by negative stain EM, which showed a RADX oligomer at the end of filaments. Based on these results, we propose a model in which RADX functions by capping and restricting the end of RAD51 filaments.


Asunto(s)
Proteínas de Unión al ADN , Recombinasa Rad51 , Proteínas de Unión al ADN/metabolismo , Recombinasa Rad51/metabolismo , Microscopía por Crioelectrón , Nucleoproteínas/metabolismo , ADN de Cadena Simple , Replicación del ADN
10.
N Engl J Med ; 388(21): 1956-1965, 2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37224197

RESUMEN

BACKGROUND: Transfusion guidelines regarding platelet-count thresholds before the placement of a central venous catheter (CVC) offer conflicting recommendations because of a lack of good-quality evidence. The routine use of ultrasound guidance has decreased CVC-related bleeding complications. METHODS: In a multicenter, randomized, controlled, noninferiority trial, we randomly assigned patients with severe thrombocytopenia (platelet count, 10,000 to 50,000 per cubic millimeter) who were being treated on the hematology ward or in the intensive care unit to receive either one unit of prophylactic platelet transfusion or no platelet transfusion before ultrasound-guided CVC placement. The primary outcome was catheter-related bleeding of grade 2 to 4; a key secondary outcome was grade 3 or 4 bleeding. The noninferiority margin was an upper boundary of the 90% confidence interval of 3.5 for the relative risk. RESULTS: We included 373 episodes of CVC placement involving 338 patients in the per-protocol primary analysis. Catheter-related bleeding of grade 2 to 4 occurred in 9 of 188 patients (4.8%) in the transfusion group and in 22 of 185 patients (11.9%) in the no-transfusion group (relative risk, 2.45; 90% confidence interval [CI], 1.27 to 4.70). Catheter-related bleeding of grade 3 or 4 occurred in 4 of 188 patients (2.1%) in the transfusion group and in 9 of 185 patients (4.9%) in the no-transfusion group (relative risk, 2.43; 95% CI, 0.75 to 7.93). A total of 15 adverse events were observed; of these events, 13 (all grade 3 catheter-related bleeding [4 in the transfusion group and 9 in the no-transfusion group]) were categorized as serious. The net savings of withholding prophylactic platelet transfusion before CVC placement was $410 per catheter placement. CONCLUSIONS: The withholding of prophylactic platelet transfusion before CVC placement in patients with a platelet count of 10,000 to 50,000 per cubic millimeter did not meet the predefined margin for noninferiority and resulted in more CVC-related bleeding events than prophylactic platelet transfusion. (Funded by ZonMw; PACER Dutch Trial Register number, NL5534.).


Asunto(s)
Cateterismo Venoso Central , Transfusión de Plaquetas , Trombocitopenia , Humanos , Recuento de Plaquetas , Transfusión de Plaquetas/métodos , Trombocitopenia/diagnóstico , Trombocitopenia/terapia , Cateterismo Venoso Central/efectos adversos , Cateterismo Venoso Central/métodos , Ultrasonografía Intervencional , Hemorragia/etiología , Hemorragia/prevención & control
11.
PLoS Pathog ; 20(7): e1012335, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39038049

RESUMEN

The human polyomavirus JCPyV is an opportunistic pathogen that infects greater than 60% of the world's population. The virus establishes a persistent and asymptomatic infection in the urogenital system but can cause a fatal demyelinating disease in immunosuppressed or immunomodulated patients following invasion of the CNS. The mechanisms responsible for JCPyV invasion into CNS tissues are not known but direct invasion from the blood to the cerebral spinal fluid via the choroid plexus has been hypothesized. To study the potential of the choroid plexus as a site of neuroinvasion, we used an adult human choroid plexus epithelial cell line to model the blood-cerebrospinal fluid (B-CSF) barrier in a transwell system. We found that these cells formed a highly restrictive barrier to virus penetration either as free virus or as virus associated with extracellular vesicles (EVJC+). The restriction was not absolute and small amounts of virus or EVJC+ penetrated and were able to establish foci of infection in primary astrocytes. Disruption of the barrier with capsaicin did not increase virus or EVJC+ penetration leading us to hypothesize that virus and EVJC+ were highly cell-associated and crossed the barrier by an active process. An inhibitor of macropinocytosis increased virus penetration from the basolateral (blood side) to the apical side (CSF side). In contrast, inhibitors of clathrin and raft dependent transcytosis reduced virus transport from the basolateral to the apical side of the barrier. None of the drugs inhibited apical to basolateral transport suggesting directionality. Pretreatment with cyclosporin A, an inhibitor of P-gp, MRP2 and BCRP multidrug resistance transporters, restored viral penetration in cells treated with raft and clathrin dependent transcytosis inhibitors. Because choroid plexus epithelial cells are known to be susceptible to JCPyV infection both in vitro and in vivo we also examined the release of infectious virus from the barrier. We found that virus was preferentially released from the cells into the apical (CSF) chamber. These data show clearly that there are two mechanisms of penetration, direct transcytosis which is capable of seeding the CSF with small amounts of virus, and infection followed by directional release of infectious virions into the CSF compartment.

12.
Blood ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717861

RESUMEN

We hypothesized that fit older patients with acute myeloid leukemia (AML) treated with decitabine (DEC) would report better health-related quality of life (HRQoL) outcomes compared to those receiving intensive chemotherapy (IC). We conducted a phase 3 randomized trial to compare DEC (10-day schedule) to IC (3+7) in older fit AML patients. HRQoL was a secondary endpoint, and it was assessed with the EORTC QLQ-C30 and the QLQ-ELD14. The following scales were a priori selected for defining the primary endpoint: physical and role functioning, fatigue, pain, and burden of illness. HRQoL was assessed at baseline, at regeneration from cycle 2, and at 6 and 12 months after randomization, and also prior to allo-HSCT and 100 days after transplantation. Overall, 606 patients underwent randomization. At 2 months, the risk of HRQoL deterioration was lower in the DEC arm than in the 3+7 arm (76% [95% CI, 69 to 82] v 88% [95% CI, 82 to 93]; odds ratio, 0.43 [95% CI, 0.24 to 0.76], P=.003). No statistically significant HRQoL differences were observed between treatment arms at the long-term evaluation combining assessments at 6 and 12 months. HRQoL deteriorations between baseline and post-allo-HSCT were observed in both arms. However, these deteriorations were not clinically meaningful in patients randomized to DEC, while this was the case for those in the 3+7 arm, in four out of the five primary HRQoL scales. Our HRQoL findings suggest that lower-intensity treatment with DEC, may be preferable to current standard IC (3+7), in fit older AML patients. ClinicalTrials.gov (NCT02172872).

13.
Circ Res ; 135(2): 280-297, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38847080

RESUMEN

BACKGROUND: Heart failure (HF) is one of the leading causes of mortality worldwide. Extracellular vesicles, including small extracellular vesicles or exosomes, and their molecular cargo are known to modulate cell-to-cell communication during multiple cardiac diseases. However, the role of systemic extracellular vesicle biogenesis inhibition in HF models is not well documented and remains unclear. METHODS: We investigated the role of circulating exosomes during cardiac dysfunction and remodeling in a mouse transverse aortic constriction (TAC) model of HF. Importantly, we investigate the efficacy of tipifarnib, a recently identified exosome biogenesis inhibitor that targets the critical proteins (Rab27a [Ras associated binding protein 27a], nSMase2 [neutral sphingomyelinase 2], and Alix [ALG-2-interacting protein X]) involved in exosome biogenesis for this mouse model of HF. In this study, 10-week-old male mice underwent TAC surgery were randomly assigned to groups with and without tipifarnib treatment (10 mg/kg 3 times/wk) and monitored for 8 weeks, and a comprehensive assessment was conducted through performed echocardiographic, histological, and biochemical studies. RESULTS: TAC significantly elevated circulating plasma exosomes and markedly increased cardiac left ventricular dysfunction, cardiac hypertrophy, and fibrosis. Furthermore, injection of plasma exosomes from TAC mice induced left ventricular dysfunction and cardiomyocyte hypertrophy in uninjured mice without TAC. On the contrary, treatment of tipifarnib in TAC mice reduced circulating exosomes to baseline and remarkably improved left ventricular functions, hypertrophy, and fibrosis. Tipifarnib treatment also drastically altered the miRNA profile of circulating post-TAC exosomes, including miR 331-5p, which was highly downregulated both in TAC circulating exosomes and in TAC cardiac tissue. Mechanistically, miR 331-5p is crucial for inhibiting the fibroblast-to-myofibroblast transition by targeting HOXC8, a critical regulator of fibrosis. Tipifarnib treatment in TAC mice upregulated the expression of miR 331-5p that acts as a potent repressor for one of the fibrotic mechanisms mediated by HOXC8. CONCLUSIONS: Our study underscores the pathological role of exosomes in HF and fibrosis in response to pressure overload. Tipifarnib-mediated inhibition of exosome biogenesis and cargo sorting may serve as a viable strategy to prevent progressive cardiac remodeling in HF.


Asunto(s)
Vesículas Extracelulares , Insuficiencia Cardíaca , Quinolonas , Animales , Masculino , Ratones , Cardiotónicos/farmacología , Cardiotónicos/uso terapéutico , Modelos Animales de Enfermedad , Vesículas Extracelulares/efectos de los fármacos , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/prevención & control , Quinolonas/farmacología , Quinolonas/uso terapéutico , Distribución Aleatoria , Regulación hacia Arriba/efectos de los fármacos , MicroARNs , Miofibroblastos/efectos de los fármacos , Miofibroblastos/metabolismo
14.
Mol Cell ; 70(3): 473-487.e6, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29727618

RESUMEN

Most G protein-coupled receptors (GPCRs) signal through both heterotrimeric G proteins and ß-arrestins (ßarr1 and ßarr2). Although synthetic ligands can elicit biased signaling by G protein- vis-à-vis ßarr-mediated transduction, endogenous mechanisms for biasing signaling remain elusive. Here we report that S-nitrosylation of a novel site within ßarr1/2 provides a general mechanism to bias ligand-induced signaling through GPCRs by selectively inhibiting ßarr-mediated transduction. Concomitantly, S-nitrosylation endows cytosolic ßarrs with receptor-independent function. Enhanced ßarr S-nitrosylation characterizes inflammation and aging as well as human and murine heart failure. In genetically engineered mice lacking ßarr2-Cys253 S-nitrosylation, heart failure is exacerbated in association with greatly compromised ß-adrenergic chronotropy and inotropy, reflecting ßarr-biased transduction and ß-adrenergic receptor downregulation. Thus, S-nitrosylation regulates ßarr function and, thereby, biases transduction through GPCRs, demonstrating a novel role for nitric oxide in cellular signaling with potentially broad implications for patho/physiological GPCR function, including a previously unrecognized role in heart failure.


Asunto(s)
Transducción de Señal/fisiología , beta-Arrestinas/metabolismo , Animales , Línea Celular , Regulación hacia Abajo/fisiología , Femenino , Células HEK293 , Humanos , Inflamación/metabolismo , Ligandos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Óxido Nítrico/metabolismo , Células RAW 264.7 , Receptores Acoplados a Proteínas G/metabolismo
15.
Proc Natl Acad Sci U S A ; 120(19): e2221542120, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37126703

RESUMEN

Laboratory models are critical to basic and translational microbiology research. Models serve multiple purposes, from providing tractable systems to study cell biology to allowing the investigation of inaccessible clinical and environmental ecosystems. Although there is a recognized need for improved model systems, there is a gap in rational approaches to accomplish this goal. We recently developed a framework for assessing the accuracy of microbial models by quantifying how closely each gene is expressed in the natural environment and in various models. The accuracy of the model is defined as the percentage of genes that are similarly expressed in the natural environment and the model. Here, we leverage this framework to develop and validate two generalizable approaches for improving model accuracy, and as proof of concept, we apply these approaches to improve models of Pseudomonas aeruginosa infecting the cystic fibrosis (CF) lung. First, we identify two models, an in vitro synthetic CF sputum medium model (SCFM2) and an epithelial cell model, that accurately recapitulate different gene sets. By combining these models, we developed the epithelial cell-SCFM2 model which improves the accuracy of over 500 genes. Second, to improve the accuracy of specific genes, we mined publicly available transcriptome data, which identified zinc limitation as a cue present in the CF lung and absent in SCFM2. Induction of zinc limitation in SCFM2 resulted in accurate expression of 90% of P. aeruginosa genes. These approaches provide generalizable, quantitative frameworks for microbiological model improvement that can be applied to any system of interest.


Asunto(s)
Infecciones Bacterianas , Fibrosis Quística , Infecciones por Pseudomonas , Humanos , Ecosistema , Infecciones por Pseudomonas/microbiología , Transcriptoma , Células Epiteliales/microbiología , Medios de Cultivo/metabolismo , Fibrosis Quística/microbiología , Pseudomonas aeruginosa/genética , Esputo/microbiología
16.
Proc Natl Acad Sci U S A ; 120(47): e2306357120, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38150462

RESUMEN

Many predator species make regular excursions from near-surface waters to the twilight (200 to 1,000 m) and midnight (1,000 to 3,000 m) zones of the deep pelagic ocean. While the occurrence of significant vertical movements into the deep ocean has evolved independently across taxonomic groups, the functional role(s) and ecological significance of these movements remain poorly understood. Here, we integrate results from satellite tagging efforts with model predictions of deep prey layers in the North Atlantic Ocean to determine whether prey distributions are correlated with vertical habitat use across 12 species of predators. Using 3D movement data for 344 individuals who traversed nearly 1.5 million km of pelagic ocean in [Formula: see text]42,000 d, we found that nearly every tagged predator frequented the twilight zone and many made regular trips to the midnight zone. Using a predictive model, we found clear alignment of predator depth use with the expected location of deep pelagic prey for at least half of the predator species. We compared high-resolution predator data with shipboard acoustics and selected representative matches that highlight the opportunities and challenges in the analysis and synthesis of these data. While not all observed behavior was consistent with estimated prey availability at depth, our results suggest that deep pelagic biomass likely has high ecological value for a suite of commercially important predators in the open ocean. Careful consideration of the disruption to ecosystem services provided by pelagic food webs is needed before the potential costs and benefits of proceeding with extractive activities in the deep ocean can be evaluated.


Asunto(s)
Ecosistema , Cadena Alimentaria , Conducta Predatoria , Animales , Océano Atlántico , Biomasa
17.
Trends Biochem Sci ; 46(12): 976-991, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34511335

RESUMEN

RNase P is an essential enzyme that catalyzes removal of the 5' leader from precursor transfer RNAs. The ribonucleoprotein (RNP) form of RNase P is present in all domains of life and comprises a single catalytic RNA (ribozyme) and a variable number of protein cofactors. Recent cryo-electron microscopy structures of representative archaeal and eukaryotic (nuclear) RNase P holoenzymes bound to tRNA substrate/product provide high-resolution detail on subunit organization, topology, and substrate recognition in these large, multisubunit catalytic RNPs. These structures point to the challenges in understanding how proteins modulate the RNA functional repertoire and how the structure of an ancient RNA-based catalyst was reshaped during evolution by new macromolecular associations that were likely necessitated by functional/regulatory coupling.


Asunto(s)
ARN Catalítico , Ribonucleasa P , Microscopía por Crioelectrón , Conformación de Ácido Nucleico , ARN , ARN Catalítico/metabolismo , ARN de Transferencia/metabolismo , Ribonucleasa P/química , Ribonucleasa P/genética , Ribonucleasa P/metabolismo
18.
J Biol Chem ; : 107579, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39025455

RESUMEN

NEIL1 is a DNA glycosylase that recognizes and initiates base excision repair of oxidized bases. The ubiquitous ssDNA binding scaffolding protein, replication protein A (RPA), modulates NEIL1 activity in a manner that depends on DNA structure. Interaction between NEIL1 and RPA has been reported, but the molecular basis of this interaction has yet to be investigated. Using a combination of NMR spectroscopy and isothermal titration calorimetry (ITC), we show that NEIL1 interacts with RPA through two contact points. An interaction with the RPA32C protein recruitment domain was mapped to a motif in the common interaction domain (CID) of NEIL1 and a dissociation constant (Kd) of 200 nM was measured. A substantially weaker secondary interaction with the tandem RPA70AB ssDNA binding domains was also mapped to the CID. Together these two contact points reveal NEIL1 has a high overall affinity (Kd ∼ 20 nM) for RPA. A homology model of the complex of RPA32C with the NEIL1 RPA binding motif in the CID was generated and used to design a set of mutations in NEIL1 to disrupt the interaction, which was confirmed by ITC. The mutant NEIL1 remains catalytically active against a thymine glycol lesion in duplex DNA in vitro. Testing the functional effect of disrupting the NEIL1-RPA interaction in vivo using a Fluorescence Multiplex-Host Cell Reactivation (FM-HCR) reporter assay revealed an unexpected role for NEIL1 in nucleotide excision repair. These findings are discussed in the context of the role of NEIL1 in replication-associated repair.

19.
N Engl J Med ; 386(22): 2112-2119, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35648703

RESUMEN

A patient with progressive metastatic pancreatic cancer was treated with a single infusion of 16.2×109 autologous T cells that had been genetically engineered to clonally express two allogeneic HLA-C*08:02-restricted T-cell receptors (TCRs) targeting mutant KRAS G12D expressed by the tumors. The patient had regression of visceral metastases (overall partial response of 72% according to the Response Evaluation Criteria in Solid Tumors, version 1.1); the response was ongoing at 6 months. The engineered T cells constituted more than 2% of all the circulating peripheral-blood T cells 6 months after the cell transfer. In this patient, TCR gene therapy targeting the KRAS G12D driver mutation mediated the objective regression of metastatic pancreatic cancer. (Funded by the Providence Portland Medical Foundation.).


Asunto(s)
Terapia Genética , Neoplasias Pancreáticas , Proteínas Proto-Oncogénicas p21(ras) , Receptores de Antígenos de Linfocitos T , Genes Codificadores de los Receptores de Linfocitos T/genética , Terapia Genética/métodos , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/terapia , Proteínas Proto-Oncogénicas p21(ras)/genética , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/uso terapéutico , Neoplasias Pancreáticas
20.
Blood ; 141(7): 713-724, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36279417

RESUMEN

Patients with hypomorphic mutations in the RAG1 or RAG2 gene present with either Omenn syndrome or atypical combined immunodeficiency with a wide phenotypic range. Hematopoietic stem cell transplantation (HSCT) is potentially curative, but data are scarce. We report on a worldwide cohort of 60 patients with hypomorphic RAG variants who underwent HSCT, 78% of whom experienced infections (29% active at HSCT), 72% had autoimmunity, and 18% had granulomas pretransplant. These complications are frequently associated with organ damage. Eight individuals (13%) were diagnosed by newborn screening or family history. HSCT was performed at a median of 3.4 years (range 0.3-42.9 years) from matched unrelated donors, matched sibling or matched family donors, or mismatched donors in 48%, 22%, and 30% of the patients, respectively. Grafts were T-cell depleted in 15 cases (25%). Overall survival at 1 and 4 years was 77.5% and 67.5% (median follow-up of 39 months). Infection was the main cause of death. In univariable analysis, active infection, organ damage pre-HSCT, T-cell depletion of the graft, and transplant from a mismatched family donor were predictive of worse outcome, whereas organ damage and T-cell depletion remained significant in multivariable analysis (hazard ratio [HR] = 6.01, HR = 8.46, respectively). All patients diagnosed by newborn screening or family history survived. Cumulative incidences of acute and chronic graft-versus-host disease were 35% and 22%, respectively. Cumulative incidences of new-onset autoimmunity was 15%. Immune reconstitution, particularly recovery of naïve CD4+ T cells, was faster and more robust in patients transplanted before 3.5 years of age, and without organ damage. These findings support the indication for early transplantation.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Recién Nacido , Humanos , Donantes de Tejidos , Linfocitos T , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Diagnóstico Precoz , Costo de Enfermedad , Enfermedad Injerto contra Huésped/diagnóstico , Enfermedad Injerto contra Huésped/etiología , Estudios Retrospectivos , Donante no Emparentado , Acondicionamiento Pretrasplante
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA