Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Plant Physiol ; 189(4): 2517-2534, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35512200

RESUMEN

Aluminum (Al) toxicity is one of the key factors limiting crop production in acid soils; however, little is known about its transcriptional regulation in plants. In this study, we characterized the role of a NAM, ATAF1/2, and cup-shaped cotyledon 2 (NAC) transcription factors (TFs), ANAC017, in the regulation of Al tolerance in Arabidopsis (Arabidopsis thaliana). ANAC017 was localized in the nucleus and exhibited constitutive expression in the root, stem, leaf, flower, and silique, although its expression and protein accumulation were repressed by Al stress. Loss of function of ANAC017 enhanced Al tolerance when compared with wild-type Col-0 and was accompanied by lower root and root cell wall Al content. Furthermore, both hemicellulose and xyloglucan content decreased in the anac017 mutants, indicating the possible interaction between ANAC017 and xyloglucan endotransglucosylase/hydrolase (XTH). Interestingly, the expression of XTH31, which is responsible for xyloglucan modification, was downregulated in the anac017 mutants regardless of Al supply, supporting the possible interaction between ANAC017 and XTH31. Yeast one-hybrid, dual-luciferase reporter assay, and chromatin immunoprecipitation-quantitative PCR analysis revealed that ANAC017 positively regulated the expression of XTH31 through directly binding to the XTH31 promoter region, and overexpression of XTH31 in the anac017 mutant background rescued its Al-tolerance phenotype. In conclusion, we identified that the tTF ANAC017 acts upstream of XTH31 to regulate Al tolerance in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Aluminio/metabolismo , Aluminio/toxicidad , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pared Celular/genética , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Plant Cell Environ ; 40(9): 1916-1925, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28622705

RESUMEN

Glucuronoxylan (GX), an important component of hemicellulose in the cell wall, appears to affect aluminium (Al) sensitivity in plants. To investigate the role of GX in cell-wall-localized xylan, we examined the Arabidopsis thaliana parvus mutant in detail. This mutant lacks α-D-glucuronic acid (GlcA) side chains in GX and has greater resistance to Al stress than wild-type (WT) plants. The parvus mutant accumulated lower levels of Al in its roots and cell walls than WT despite having cell wall pectin content and pectin methylesterase (PME) activity similar to those of WT. Our results suggest that the altered properties of hemicellulose in the mutant contribute to its decreased Al accumulation. Although we observed almost no differences in hemicellulose content between parvus and WT under control conditions, less Al was retained in parvus hemicellulose than in WT. This observation is consistent with the finding that GlcA substitutions in WT GX, but not mutant GX, were increased under Al stress. Taken together, these results suggest that the modulation of GlcA levels in GX affects Al resistance by influencing the Al binding capacity of the root cell wall in Arabidopsis.


Asunto(s)
Aluminio/toxicidad , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Glicosiltransferasas/metabolismo , Xilanos/química , Adsorción , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Cinética , Mutación/genética , Pectinas/metabolismo , Fenotipo , Plantas Modificadas Genéticamente , Polisacáridos/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Ácidos Urónicos/metabolismo , Xilanos/metabolismo
3.
Plant Physiol ; 165(4): 1566-1574, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24948835

RESUMEN

Previously, we reported that although the Arabidopsis (Arabidopsis thaliana) Xyloglucan Endotransglucosylase-Hydrolase31 (XTH31) has predominately xyloglucan endohydrolase activity in vitro, loss of XTH31 results in remarkably reduced in vivo xyloglucan endotransglucosylase (XET) action and enhanced Al resistance. Here, we report that XTH17, predicted to have XET activity, binds XTH31 in yeast (Saccharomyces cerevisiae) two-hybrid and coimmunoprecipitations assays and that this interaction may be required for XTH17 XET activity in planta. XTH17 and XTH31 may be colocalized in plant cells because tagged XTH17 fusion proteins, like XTH31 fusion proteins, appear to target to the plasma membrane. XTH17 expression, like that of XTH31, was substantially reduced in the presence of aluminum (Al), even at concentrations as low as 10 µm for 24 h or 25 µm for just 30 min. Agrobacterium tumefaciens-mediated transfer DNA insertion mutant of XTH17, xth17, showed low XET action and had moderately shorter roots than the wild type but was more Al resistant than the wild type. Similar to xth31, xth17 had low hemicellulose content and retained less Al in the cell wall. These data suggest a model whereby XTH17 and XTH31 may exist as a dimer at the plasma membrane to confer in vivo XET action, which modulates cell wall Al-binding capacity and thereby affects Al sensitivity in Arabidopsis.

4.
Plant Physiol ; 166(1): 181-9, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25006026

RESUMEN

Xyloglucan (XyG) has been reported to contribute to the aluminum (Al)-binding capacity of the cell wall in Arabidopsis (Arabidopsis thaliana). However, the influence of O-acetylation of XyG, accomplished by the putative O-acetyltransferase TRICHOME BIREFRINGENCE-LIKE27 (TBL27 [AXY4]), on its Al-binding capacity is not known. In this study, we found that the two corresponding TBL27 mutants, axy4-1 and axy4-3, were more Al sensitive than wild-type Columbia-0 plants. TBL27 was expressed in roots as well as in leaves, stems, flowers, and siliques. Upon Al treatment, even within 30 min, TBL27 transcript accumulation was strongly down-regulated. The mutants axy4-1 and axy4-3 accumulated significantly more Al in the root and wall, which could not be correlated with pectin content or pectin methylesterase activity, as no difference in the mutants was observed compared with the wild type when exposed to Al stress. The increased Al accumulation in the wall of the mutants was found to be in the hemicellulose fraction. While the total sugar content of the hemicellulose fraction did not change, the O-acetylation level of XyG was reduced by Al treatment. Taken together, we conclude that modulation of the O-acetylation level of XyG influences the Al sensitivity in Arabidopsis by affecting the Al-binding capacity in the hemicellulose.


Asunto(s)
Aluminio/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Glucanos/metabolismo , Resolvasas de Unión Holliday/metabolismo , Polisacáridos/metabolismo , Xilanos/metabolismo , Acetilación , Proteínas de Arabidopsis/genética , Pared Celular/metabolismo , Resolvasas de Unión Holliday/genética , Raíces de Plantas/metabolismo
5.
J Exp Bot ; 66(3): 1017-24, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25528599

RESUMEN

Plants growing in phosphorus (P)-deficient conditions can either increase their exploration of the environment (hence increasing P uptake) or can solubilize and reutilize P from established tissue sources. However, it is currently unclear if P stored in root cell wall can be reutilized. The present study shows that culture of the rice cultivars 'Nipponbare' (Nip) and 'Kasalath' (Kas) in P-deficient conditions results in progressive reductions in root soluble inorganic phosphate (Pi). However, Nip consistently maintains a higher level of soluble Pi and lower relative cell wall P content than does Kas, indicating that more cell wall P is released in Nip than in Kas. P-deficient Nip has a greater pectin and hemicellulose 1 (HC1) content than does P-deficient Kas, consistent with the significant positive relationship between pectin and root-soluble Pi levels amongst multiple rice cultivars. These observations suggest that increased soluble Pi might result from increased pectin content during P starvation. In vitro experiments showed that pectin releases Pi from insoluble FePO4. Furthermore, an Arabidopsis thaliana mutant with reduced pectin levels (qua1-2), has less root soluble Pi and is more sensitive to P deficiency than the wild type (WT) Col-0, whereas NaCl-treated WT plants exhibit both an increased root pectin content and an elevated soluble Pi content during P-starvation. These observations indicate that pectin can facilitate the remobilization of P deposited in the cell wall. This is a previously unknown mechanism for the reutilization of P in P-starved plants.


Asunto(s)
Oryza/metabolismo , Pectinas/metabolismo , Fosfatos/metabolismo , Fósforo/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/metabolismo , Pared Celular/metabolismo , Mutación , Oryza/genética , Raíces de Plantas/metabolismo
6.
J Integr Plant Biol ; 57(10): 830-7, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25404058

RESUMEN

Glucose (Glu) is involved in not only plant physiological and developmental events but also plant responses to abiotic stresses. Here, we found that the exogenous Glu improved root and shoot growth, reduced shoot cadmium (Cd) concentration, and rescued Cd-induced chlorosis in Arabidopsis thaliana (Columbia ecotype, Col-0) under Cd stressed conditions. Glucose increased Cd retained in the roots, thus reducing its translocation from root to shoot significantly. The most Cd retained in the roots was found in the hemicellulose 1. Glucose combined with Cd (Glu + Cd) treatment did not affect the content of pectin and its binding capacity of Cd while it increased the content of hemicelluloses 1 and the amount of Cd retained in it significantly. Furthermore, Leadmium Green staining indicated that more Cd was compartmented into vacuoles in Glu + Cd treatment compared with Cd treatment alone, which was in accordance with the significant upregulation of the expression of tonoplast-localized metal transporter genes, suggesting that compartmentation of Cd into vacuoles also contributes to the Glu-alleviated Cd toxicity. Taken together, we demonstrated that Glu-alleviated Cd toxicity is mediated through increasing Cd fixation in the root cell wall and sequestration into the vacuoles.


Asunto(s)
Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Cadmio/metabolismo , Cadmio/toxicidad , Pared Celular/efectos de los fármacos , Glucosa/farmacología , Vacuolas/metabolismo , Pared Celular/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Vacuolas/efectos de los fármacos
7.
Sci Rep ; 8(1): 428, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29323145

RESUMEN

Although xyloglucan (XyG) is reported to bind Aluminium (Al), the influence of XyG fucosylation on the cell wall Al binding capacity and plant Al stress responses is unclear. We show that Arabidopsis T-DNA insertion mutants with reduced AXY3 (XYLOSIDASE1) function and consequent reduced levels of fucosylated XyG are more sensitive to Al than wild-type Col-0 (WT). In contrast, T-DNA insertion mutants with reduced AXY8 (FUC95A) function and consequent increased levels of fucosylated XyG are more Al resistant. AXY3 transcript levels are strongly down regulated in response to 30 min Al treatment, whilst AXY8 transcript levels also repressed until 6 h following treatment onset. Mutants lacking AXY3 or AXY8 function exhibit opposing effects on Al contents of root cell wall and cell wall hemicellulose components. However, there was no difference in the amount of Al retained in the pectin components between mutants and WT. Finally, whilst the total sugar content of the hemicellulose fraction did not change, the altered hemicellulose Al content of the mutants is shown to be a likely consequence of their different XyG fucosylation levels. We conclude that variation in XyG fucosylation levels influences the Al sensitivity of Arabidopsis by affecting the Al-binding capacity of hemicellulose.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Fucosa/metabolismo , Glucanos/química , Polisacáridos/metabolismo , Xilanos/química , Aluminio , Arabidopsis/genética , Arabidopsis/metabolismo , Pared Celular/genética , Pared Celular/metabolismo , ADN Bacteriano/genética , Mutagénesis Insercional , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Xilosidasas/genética , alfa-L-Fucosidasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA