Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 24(5): 1650-1659, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38265360

RESUMEN

Precision nanoengineering of porous two-dimensional structures has emerged as a promising avenue for finely tuning catalytic reactions. However, understanding the pore-structure-dependent catalytic performance remains challenging, given the lack of comprehensive guidelines, appropriate material models, and precise synthesis strategies. Here, we propose the optimization of two-dimensional carbon materials through the utilization of mesopores with 5-10 nm diameter to facilitate fluid acceleration, guided by finite element simulations. As proof of concept, the optimized mesoporous carbon nanosheet sample exhibited exceptional electrocatalytic performance, demonstrating high selectivity (>95%) and a notable diffusion-limiting disk current density of -3.1 mA cm-2 for H2O2 production. Impressively, the electrolysis process in the flow cell achieved a production rate of 14.39 mol gcatalyst-1 h-1 to yield a medical-grade disinfectant-worthy H2O2 solution. Our pore engineering research focuses on modulating oxygen reduction reaction activity and selectivity by affecting local fluid transport behavior, providing insights into the mesoscale catalytic mechanism.

2.
BMC Cancer ; 24(1): 523, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664760

RESUMEN

BACKGROUND: Although numerous studies have reported the prognostic value of the lung immune prognostic index (LIPI) in non-small cell lung cancer (NSCLC) patients treated with immune checkpoint inhibitors (ICIs), the prognostic value of the LIPI in a pancancer setting remains unclear. METHODS: A comprehensive search was conducted until July 2023 across the PubMed, Embase, Web of Science, and Cochrane Library databases to identify relevant studies evaluating the prognostic value of the LIPI in cancer patients treated with ICIs. The outcomes were overall survival (OS), progression-free survival (PFS), objective response rate (ORR), and disease control rate (DCR). We described and compared the pooled outcomes by stratifying the patients based on different groupings of LIPI (good vs. intermediate [0 vs. 1], good vs. poor [0 vs. 2], and good vs. intermediate / poor [0 vs. 1 + 2]). RESULTS: A total of 9959 patients in 35 studies were included. A higher score of LIPI was associated with impaired OS. The pooled HRs were 1.69 (95% CI: 1.55-1.85, p < 0.001; 0 vs. 1), 3.03 (95% CI: 2.53-3.63, p < 0.001; 0 vs. 2), and 2.38 (95% CI: 1.97-2.88, p < 0.001; 0 vs. 1 + 2). A higher LIPI score was associated with shorter PFS. The pooled HRs were 1.41 (95% CI: 1.31-1.52, p < 0.001; 0 vs. 1), 2.23 (95% CI: 1.87-2.66, p < 0.001; 0 vs. 2), and 1.65 (95% CI: 1.46-1.86, p < 0.001; 0 vs. 1 + 2). Similarly, a higher LIPI score was associated with a lower ORR. The pooled ORs were 0.63 (95% CI: 0.54-0.75, p < 0.001; 0 vs. 1) and 0.38 (95% CI: 0.29-0.50, p < 0.001; 0 vs. 2). A higher LIPI score was associated with a lower DCR. The pooled ORs were 0.47 (95% CI: 0.35-0.61, p < 0.001; 0 vs. 1) and 0.19 (95% CI: 0.12-0.30, p < 0.001; 0 vs. 2). CONCLUSION: In patients with NSCLC or other solid tumours, the lung immune prognostic index could robustly stratify the clinical outcomes into three groups among the patients who receive ICIs. LIPI is a low-cost, simple, accessible, and accurate prognostic tool in a pancancer setting and it may contribute to the evaluation of risk stratification in patients treated with ICIs.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Neoplasias Pulmonares , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Pronóstico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Carcinoma de Pulmón de Células no Pequeñas/patología , Supervivencia sin Progresión
3.
Bioorg Med Chem Lett ; 106: 129774, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38688438

RESUMEN

Herein, we constructed a fluorescence biosensor for the ultra-sensitive analysis of microRNAs (miRNAs) by combining DNA hairpins transition triggered strand displacement amplification (DHT-SDA) with primer exchange reaction (PER). Target miRNA initiated DHT-SDA to facilitate the generation of multiple single-stranded DNA (ssDNA) as PER primer, which was extended into a long ssDNA. The biosensor is successfully utilized in detecting miRNAs with high sensitivity (limit of detection for miRNA-21 was 58 fM) and a good linear relationship between 100 nM and 100 fM. By simply changing the DNA hairpin sequence, the constructed biosensor can be extended to analyze another miRNAs. Moreover, the biosensor has the feasibility of detecting miRNAs in real samples with satisfactory accuracy and reliability. Therefore, the fluorescent biosensor has great application potential in clinical diagnosis.


Asunto(s)
Técnicas Biosensibles , MicroARNs , Técnicas de Amplificación de Ácido Nucleico , MicroARNs/metabolismo , MicroARNs/análisis , Humanos , ADN/química , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , Fluorescencia , Secuencias Invertidas Repetidas , Espectrometría de Fluorescencia , Límite de Detección , Cartilla de ADN/química
4.
Anal Bioanal Chem ; 416(13): 3195-3203, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38613682

RESUMEN

We propose a sensitive H1N1 virus fluorescence biosensor based on ligation-transcription and CRISPR/Cas13a-assisted cascade amplification strategies. Products are generated via the hybridization of single-stranded DNA (ssDNA) probes containing T7 promoter and crRNA templates to a target RNA sequence using SplintR ligase. This generates large crRNA quantities in the presence of T7 RNA polymerase. At such crRNA quantities, ternary Cas13a, crRNA, and activator complexes are successfully constructed and activate Cas13a to enhance fluorescence signal outputs. The biosensor sensitively and specifically monitored H1N1 viral RNA levels down to 3.23 pM and showed good linearity when H1N1 RNA concentrations were 100 pM-1 µM. Biosensor specificity was also excellent. Importantly, our biosensor may be used to detect other viral RNAs by altering the sequences of the two probe junctions, with potential applications for the clinical diagnosis of viruses and other biomedical studies.


Asunto(s)
Técnicas Biosensibles , Sistemas CRISPR-Cas , Subtipo H1N1 del Virus de la Influenza A , ARN Viral , Técnicas Biosensibles/métodos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , ARN Viral/análisis , ARN Viral/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , Humanos , Límite de Detección , Fluorescencia , Transcripción Genética
5.
Mikrochim Acta ; 191(8): 453, 2024 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970675

RESUMEN

An electrochemical biosensor has been developed for detection of Escherichia coli O157 by integrating lateral flow with screen-printed electrodes. The screen-printed electrodes were attached under the lateral flow detection line, and organic-inorganic nanoflowers prepared from E. coli O157-specific antibodies as an organic component were attached to the lateral flow detection line. In the presence of E. coli O157, an organic-inorganic nanoflower-E. coli O157-antimicrobial peptide-labelled ferrocene sandwich structure is formed on the lateral flow detection line. Differential pulse voltammetry is applied using a smartphone-based device to monitor ferrocene on the detection line. The resulting electrochemical biosensor could specifically detect E. coli O157 with a limit of detection of 25 colony-forming units mL-1. Through substitution of antibodies of organic components in organic-inorganic nanoflowers, biosensors have great potential for the detection of other pathogens in biomedical research and clinical diagnosis.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Escherichia coli O157 , Escherichia coli O157/aislamiento & purificación , Escherichia coli O157/inmunología , Técnicas Biosensibles/métodos , Inmunoensayo/métodos , Inmunoensayo/instrumentación , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Límite de Detección , Nanoestructuras/química , Electrodos , Compuestos Ferrosos/química , Anticuerpos Inmovilizados/inmunología , Metalocenos/química , Anticuerpos Antibacterianos/química , Anticuerpos Antibacterianos/inmunología , Péptidos Antimicrobianos/química
6.
Chem Soc Rev ; 52(3): 1103-1128, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36651148

RESUMEN

Energy and environmental issues have attracted increasing attention globally, where sustainability and low-carbon emissions are seriously considered and widely accepted by government officials. In response to this situation, the development of renewable energy and environmental technologies is urgently needed to complement the usage of traditional fossil fuels. While a big part of advancement in these technologies relies on materials innovations, new materials discovery is limited by sluggish conventional materials synthesis methods, greatly hindering the advancement of related technologies. To address this issue, this review introduces and comprehensively summarizes emerging ultrafast materials synthesis methods that could synthesize materials in times as short as nanoseconds, significantly improving research efficiency. We discuss the unique advantages of these methods, followed by how they benefit individual applications for renewable energy and the environment. We also highlight the scalability of ultrafast manufacturing towards their potential industrial utilization. Finally, we provide our perspectives on challenges and opportunities for the future development of ultrafast synthesis and manufacturing technologies. We anticipate that fertile opportunities exist not only for energy and the environment but also for many other applications.

7.
Nano Lett ; 23(9): 4014-4022, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37079652

RESUMEN

Lithium metal is widely regarded as the "ultimate" anode for energy-dense Li batteries, but its high reactivity and delicate interface make it prone to dendrite formation, limiting its practical use. Inspired by self-assembled monolayers on metal surfaces, we propose a facile yet effective strategy to stabilize Li metal anodes by creating an artificial solid electrolyte interphase (SEI). Our method involves dip-coating Li metal in MPDMS to create an SEI layer that is rich in inorganic components, allowing uniform Li plating/stripping under a low overpotential over 500 cycles in carbonate electrolytes. In comparison, pristine Li metal shows a rapid increase in overpotential after merely 300 cycles, leading to failure soon after. Molecular dynamics simulations demonstrate that this uniform artificial SEI suppresses Li dendrite formation. We further demonstrated its enhanced stability pairing with LiFePO4 and LiNi1-x-yCoxMnyO2 cathodes, highlighting the proposed strategy as a promising solution for practical Li metal batteries.

8.
Bioorg Med Chem Lett ; 74: 128949, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35998847

RESUMEN

Abnormal microRNA (miRNA) expression levels are confirmed as diagnostic biomarkers of the emergence and development of diseases. In this study, we developed a fluorescence biosensor for detecting miRNAs based on double amplification reactions with the primer exchange reaction (PER) and CRISPR/Cas12a. In the absence of target miRNA-21, PER hairpins remained locked by the protector strands and the primers did not extend. In the presence of target miRNA-21, the miRNA-21 bound to the guard sequence and exposed primer binding sites. Also, the closed PER hairpin was unlocked to specifically extend primers into single-stranded DNA (ssDNA) of unequal lengths. These ssDNAs of unequal lengths could activate the cleavage of a reporter by Cas12a, leading to an increase in detectable fluorescence signals. A large number of short nucleic acid fragments were amplified by PER-CRISPR multiple cycle cleavage fluorescent probes. Based on PER-combined CRISPR/Cas12a established dual signal amplification method was characterized by a low limit of detection of 10fM. The fluorescent biosensor for miRNA detection had the advantages of low detection cost, simple operation, and mobility, providing a very promising platform for the point-of-care testing of miRNA-21.


Asunto(s)
Técnicas Biosensibles , MicroARNs , Técnicas Biosensibles/métodos , Sistemas CRISPR-Cas/genética , ADN de Cadena Simple , Colorantes Fluorescentes/química , MicroARNs/genética
9.
Anal Bioanal Chem ; 414(29-30): 8437-8445, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36264297

RESUMEN

This study provides proof of concept of a colorimetric biosensor for influenza H1N1 virus assay based on the CRISPR/Cas13a system and hybridization chain reaction (HCR). Target RNA of influenza H1N1 virus activated the trans-cleavage activity of Cas13a, which cleaved the special RNA sequence (-UUU-) of the probe, further initiating HCR to copiously generate G-rich DNA. Abundant G-quadruplex/hemin was formed in the presence of hemin, thus catalyzing a colorimetric reaction. The colorimetric biosensor exhibited a linear relationship from 10 pM to 100 nM. The detection limit was 0.152 pM. The biosensor specificity was excellent. This new and sensitive detection method for influenza virus is a promising rapid influenza diagnostic test.


Asunto(s)
Técnicas Biosensibles , ADN Catalítico , G-Cuádruplex , Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Humanos , Hemina , ADN Catalítico/metabolismo , Subtipo H1N1 del Virus de la Influenza A/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Gripe Humana/diagnóstico , Técnicas Biosensibles/métodos
10.
Anal Bioanal Chem ; 414(2): 1073-1080, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34693471

RESUMEN

In this study, Lba Cas12a (Cpf1) as one of the CRISPR systems from Lachnospiraceae bacterium was coupled with a hybridization chain reaction (HCR) to develop an electrochemical biosensor for detecting the pathogenic bacterium, Salmonella typhimurium. Autonomous cross-opening of functional DNA hairpin structures of HCR yielded polymer double-stranded DNA wires consisting of numerous single-stranded DNAs, which initiated the trans-cleavage activity of CRISPR-Cas12a to indiscriminately cleave random single-stranded DNA labeling electrochemical tags on the surface of the electrode. It led to a variation in the electron transfer of electrochemical tags. The polymer double-stranded DNA of HCR was immobilized on dynabeads (DBs) via the S. typhimurium aptamer and released from DBs. The established method could selectively and sensitively quantify S. typhimurium in samples with detection limits of 20 CFU/mL. Our study provides a novel insight for exploring universal analytical methods for pathogenic bacteria based on CRISPR-Cas12a coupled with HCR.


Asunto(s)
Técnicas Biosensibles/métodos , Sistemas CRISPR-Cas , Técnicas Electroquímicas/métodos , Salmonella typhimurium/aislamiento & purificación , Electroforesis en Gel de Poliacrilamida , Salmonella typhimurium/patogenicidad
11.
Analyst ; 146(15): 4841-4847, 2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34223580

RESUMEN

A novel electrochemical biosensor for detecting pathogenic bacteria was designed based on specific magnetic separation and highly sensitive click chemistry. Instead of enzyme-antibody conjugates, organic-inorganic hybrid nanoflowers [concanavalin A (Con A)-Cu3(PO4)2] were used as the signal probe of the sandwich structure. The inorganic component, the copper ions of hybrid nanoflowers, was first used to amplify signal transduction for enzyme-free detection. Sodium ascorbate could dissolve Cu3(PO4)2 of the signal probe to produce Cu2+, which was subsequently converted to Cu+, triggering the Cu+-catalyzed alkyne-azide cycloaddition (CuAAC) reaction between azide-functionalized ssDNA (a fragment of the DNAzyme-containing sequence) and alkyne-functionalized ssDNA immobilized onto the electrode surface. As a result, the DNAzyme was immobilized onto the gold electrode, which produced a positive and stable electrical signal. An exceptional linear relationship was observed between the electrical signal and the concentration of Salmonella typhimurium (101-107 CFU mL-1) with a detection limit of 10 CFU mL-1. The developed electrochemical biosensor based on dual signal amplification of Cu3(PO4)2-mediated click chemistry and DNAzymes exhibited good results in detecting S. typhimurium in milk samples.


Asunto(s)
Técnicas Biosensibles , ADN Catalítico , Bacterias , Química Clic , Cobre , Técnicas Electroquímicas , Oro , Límite de Detección
12.
Biotechnol Appl Biochem ; 68(3): 560-567, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32472699

RESUMEN

To prevent foodborne diseases and minimize their impacts, it is extremely important to develop a cost-effective and efficient bacterial detection assay for diagnostics, particularly in resource-poor settings. In this study, 16S rRNA from foodborne Salmonella was coupled with multiple HCR (hybridization chain reaction) concatemers and functionalized in a signal structure for lateral flow nucleic acid biosensor (LFNAB) detection. The 16S rRNA was incubated with two specific capture probes and multiple helper probes carrying the same initiator, to unwind its secondary structure and form an "initiators-on-a-string" complex. Through use of the initiators, each target 16S rRNA yielded multiple HCR concatemers tethered to numerous biotins, and numerous streptavidin-labeled gold nanoparticles were introduced on the LFNAB. The limit of detection was 53.65 CFU/mL for Salmonella. Notably, this method has high specificity and applicability for the detection of Salmonella in food and water samples.


Asunto(s)
Técnicas Biosensibles , Nanoestructuras/química , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , Salmonella/aislamiento & purificación , Enfermedades Transmitidas por los Alimentos/diagnóstico , Oro/química , Humanos , Nanopartículas del Metal/química , Salmonella/genética
13.
Nano Lett ; 20(3): 1686-1692, 2020 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-32020809

RESUMEN

Safety issues in lithium-ion batteries have raised serious concerns due to their ubiquitous utilization and close contact with the human body. Replacing flammable liquid electrolytes, solid-state electrolytes (SSEs) is thought to address this issue as well as provide unmatched energy densities in Li-based batteries. However, among the most intensively studied SSEs, polymeric solid electrolyte and polymer/ceramic composites are usually flammable, leaving the safety issue unattended. Here, we report the first design of a fireproof, ultralightweight polymer-polymer SSE. The SSE is composed of a porous mechanic enforcer (polyimide, PI), a fire-retardant additive (decabromodiphenyl ethane, DBDPE), and a ionic conductive polymer electrolyte (poly(ethylene oxide)/lithium bis(trifluoromethanesulfonyl)imide). The whole SSE is made from organic materials, with a thin, tunable thickness (10-25 µm), which endorse the energy density comparable to conventional separator/liquid electrolytes. The PI/DBDPE film is thermally stable, nonflammable, and mechanically strong, preventing Li-Li symmetrical cells from short-circuiting after more than 300 h of cycling. LiFePO4/Li half cells with our SSE show a high rate performance (131 mAh g-1 at 1 C) as well as cycling performance (300 cycles at C/2 rate) at 60 °C. Most intriguingly, pouch cells made with our polymer-polymer SSE still functioned well even under flame abuse tests.

14.
Nano Lett ; 20(7): 5496-5503, 2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32515973

RESUMEN

Solid-state Li-S batteries are attractive due to their high energy density and safety. However, it is unclear whether the concepts from liquid electrolytes are applicable in the solid state to improve battery performance. Here, we demonstrate that the nanoscale encapsulation concept based on Li2S@TiS2 core-shell particles, originally developed in liquid electrolytes, is effective in solid polymer electrolytes. Using in situ optical cell and sulfur K-edge X-ray absorption, we find that polysulfides form and are well-trapped inside individual particles by the nanoscale TiS2 encapsulation. This TiS2 encapsulation layer also functions to catalyze the oxidation reaction of Li2S to sulfur, even in solid-state electrolytes, proven by both experiments and density functional theory calculations. A high cell-level specific energy of 427 W·h·kg-1 is achieved by integrating the Li2S@TiS2 cathode with a poly(ethylene oxide)-based electrolyte and a lithium metal anode. This study points to the fruitful direction of borrowing concepts from liquid electrolytes into solid-state batteries.

15.
Analyst ; 145(22): 7340-7348, 2020 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-32930195

RESUMEN

We developed an electrochemical aptasensor based on cocoon-like DNA nanostructures as signal tags for highly sensitive and selective detection of Escherichia coli O157:H7. The stable cocoon-like DNA nanostructures synthesized by the rolling circle amplification reaction were loaded with hemin as electrochemical signal tags to amplify the signals. The single-stranded DNA capture probes were modified on the surface of a Au electrode via a Au-S bond. The E. coli O157:H7 specific aptamer and capture probe formed double-stranded DNA structures on the Au electrode. The aptamer preferentially bound to E. coli O157:H7, causing the dissociation of some aptamer-capture probes and releasing some capture probes. Subsequently, the free capture probes hybridized with the DNA nanostructures through the cDNA sequence. Under optimal conditions, the change in the electrochemical signal was proportional to the logarithm of E. coli O157:H7 concentration, from 10 to 106 CFU mL-1, and the detection limit was estimated to be 10 CFU mL-1. The electrochemical aptasensor could be readily used to detect various pathogenic bacteria and to provide a new method of early diagnosis of pathogenic microorganisms.


Asunto(s)
Técnicas Biosensibles , Escherichia coli O157 , Nanoestructuras , Técnicas Electroquímicas , Electrodos , Escherichia coli O157/genética
16.
Analyst ; 145(12): 4328-4334, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32367088

RESUMEN

A sandwich-type electrochemical biosensor was successfully constructed for the sensitive detection of pathogenic bacteria. In this biosensor platform, methylene blue (MB) organic-inorganic nanocomposites (MB@MI) were synthesized from magainin I (MI, antimicrobial peptide specific to Escherichia coli O157:H7), Cu3(PO4)2 and MB via a one-pot method, and were explored as a novel electrochemical signal label of biosensors generating amplified electrochemical signals by differential pulse voltammetry (DPV). E. coli O157:H7 specifically sandwich bound to the aptamers on the electrode surface and MB@MI nanocomposites, and the changes in the current signal generated on the electrode surface were used for the quantitative determination of E. coli O157:H7. Under optimum conditions, the proposed biosensor showed excellent performance with a wide linear range of 102-107 CFU mL-1 and a low detection limit of 32 CFU mL-1, featuring favorable selectivity, repeatability and stability. According to the experiments conducted on real samples, the proposed approach is capable of detecting pathogenic bacteria in clinical diagnostics.


Asunto(s)
Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Escherichia coli O157/aislamiento & purificación , Azul de Metileno/química , Nanocompuestos/química , Animales , Péptidos Catiónicos Antimicrobianos/química , Aptámeros de Nucleótidos/química , ADN/química , Escherichia coli O157/química , Contaminación de Alimentos/análisis , Ácidos Nucleicos Inmovilizados/química , Leche/microbiología
17.
Anal Bioanal Chem ; 412(28): 7955-7962, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32879993

RESUMEN

Aldehyde dehydrogenase (ALDH) was first developed as an enzymatic signaling system of a biosensor for sensitive point-of-care detection of pathogenic bacteria. ALDH and specific aptamers to Salmonella typhimurium (S. typhimurium), as organic components, were embedded in organic-inorganic nanocomposites as a biosensor signal label, integrating the functions of signal amplification and target recognition. The biosensing mechanism is based on the fact that ALDH can catalyze rapid oxidation of acetaldehyde into acetic acid, resulting in pH change with portable pH meter readout. The altered pH exhibited a linear relationship with the logarithm of S. typhimurium from 102 to 108 CFU/mL and detection limit of 46 CFU/mL. Thus, the proposed biosensor has potential application in the diagnosis of pathogenic bacteria.


Asunto(s)
Aldehído Deshidrogenasa/metabolismo , Salmonella typhimurium/aislamiento & purificación , Transducción de Señal , Animales , Técnicas Biosensibles/métodos , Recuento de Colonia Microbiana , Límite de Detección , Microscopía Electrónica de Rastreo , Leche/microbiología
18.
Mikrochim Acta ; 187(12): 679, 2020 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-33247373

RESUMEN

A point-of-care (POC) immunoassay was established for the sensitive and rapid detection of pathogenic Escherichia coli O157:H7, using magnetic Fe3O4 organic-inorganic composites (Ab@Fe3O4) for immunomagnetic separation, nanozyme platinum nanoparticle (PtNp) organic-inorganic composites (Ap@PtNp) for signal amplification, and thermometer readings. Antibodies and Fe3O4 were incubated in Cu2+ phosphate buffer to synthesize the magnetic composite Ab@Fe3O4 with antibodies, to specifically capture E. coli O157:H7. Antimicrobial peptides and PtNp were incubated in Cu2+ phosphate buffer to synthesize the signal composites Ap@PtNp with antimicrobial peptides (magainin I), recognizing and labeling E. coli O157:H7. In the presence of E. coli O157:H7, magnetic microcomposites targeted bacteria and signal microcomposites to form the sandwich structure: Ab@Fe3O4-bacteria-Ap@PtNp for magnetic separation. Ap@PtNp of signal composites catalyzed H2O2 to generate thermo-signals (temperature rise), which were determined by a thermometer. This point-of-care bioassay detected E. coli O157:H7 in the linear range of 101-107 CFU mL-1 and with a detection limit of 14 CFU mL-1. One-pot process magnetic Fe3O4 organic-inorganic composites (Ab@Fe3O4, magnetic microcomposites, MMC) for immunomagnetic separation and nanozyme platinum nanoparticle (PtNp) organic-inorganic composites (Ap@PtNp, signal microcomposites, SMC) were used as signal amplification and thermometer readings for E. coli O157:H7 detection.


Asunto(s)
Anticuerpos Antibacterianos/inmunología , Escherichia coli O157/aislamiento & purificación , Óxido Ferrosoférrico/química , Inmunoensayo/métodos , Magnetismo , Nanopartículas del Metal/química , Anticuerpos Antibacterianos/química , Escherichia coli O157/inmunología , Microbiología de Alimentos , Inmunoensayo/instrumentación , Platino (Metal)/química , Sistemas de Atención de Punto , Termómetros
19.
Mikrochim Acta ; 187(4): 220, 2020 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-32166432

RESUMEN

A sandwich immunoassay was developed for determination of E. coli O157:H7. This is based on an antimicrobial peptide-mediated nanocomposite pair and uses a personal glucose meter as signal readout. The antimicrobial peptides, magainins I, and cecropin P1 were employed as recognition molecules for the nanocomposite pair, respectively. With a one-step process, copper phosphate nanocomposites embedded by magainins I and Fe3O4 were used as "capturing" probes for bacterial magnetic isolation, and calcium phosphate nanocomplexes composed of cecropin P1 and invertase were used as signal tags. After magnetic separation, the invertase of the signal tags hydrolyzed sucrose to glucose, thereby converting E. coli O157:H7 levels to glucose levels. This latter can be quantified by a personal glucose meter. Under optimal conditions, the concentration of E. coli O157:H7 can be determined in a linear range of 10 to 107 CFU·mL-1 with a detection limit of 10 CFU·mL-1. The method was successfully applied to the determination of E. coli O157:H7 in milk samples. Graphical abstract Schematic representation of sandwich immunoassay for E. coli O157:H7. One-pot synthetic of Fe3O4-magainins I nanocomposites (MMP) were used for magnetic capture. Cecropin P1-invertase nanocomposites (PIP) were used as signal tags. A personal glucose meter was used as readout to determine the target.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/química , Técnicas Biosensibles , Automonitorización de la Glucosa Sanguínea , Técnicas Electroquímicas , Escherichia coli O157/aislamiento & purificación , Inmunoensayo , Nanocompuestos/química , Animales , Técnicas Biosensibles/instrumentación , Automonitorización de la Glucosa Sanguínea/instrumentación , Técnicas Electroquímicas/instrumentación , Contaminación de Alimentos/análisis , Leche/microbiología
20.
Mikrochim Acta ; 187(11): 600, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-33034762

RESUMEN

An electrochemical immunosensor based on ferrocene (Fc)-functionalized nanocomposites was fabricated as an efficient electroactive signal probe to amplify electrochemical signals for Salmonella typhimurium detection. The electrochemical signal amplification probe was constructed by encapsulating ferrocene into S. typhimurium-specific antimicrobial peptides Magainin I (MI)-Cu3(PO4)2 organic-inorganic nanocomposites (Fc@MI) through a one-step process. Magnetic beads (MBs) coupled with antibody were used as capture ingredient for target magnetic separation, and Fc@MI nanoparticles were used as signal labels in the immunoassays. The sandwich of MBs-target-Fc@MI assay was performed using a screen-printed carbon electrode as transducer surface. The immunosensor platform presents a low limit of detection (LOD) of 3 CFU·mL-1 and a linear range from 10 to 107 CFU·mL-1, with good specificity and precision, and was successfully applied for S. typhimurium detection in milk. Graphical abstract One-pot process antimicrobial peptides Magainin I-Cu3(PO4)2 organic-inorganic nanocomposites (Fc@MI) were used as ideal electrochemical signal label, integrating both essential functions of biological recognition and signal amplification. Screen-printed carbon electrode (SPCE) was used as the electrochemical system for Salmonella typhimurium detection.


Asunto(s)
Técnicas Electroquímicas/instrumentación , Compuestos Ferrosos/química , Inmunoensayo/métodos , Metalocenos/química , Nanocompuestos/química , Salmonella typhimurium/aislamiento & purificación , Técnicas Electroquímicas/métodos , Sensibilidad y Especificidad , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA