Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38305710

RESUMEN

A Gram-stain-positive bacterium capable of resisting 5.0 mM glufosinate, designated strain YX-27T, was isolated from a sludge sample collected from a factory in Wuxi, Jiangsu, PR China. Cells were rod-shaped, facultatively anaerobic, endospore-forming, and motile by peritrichous flagella. Growth was observed at 15-42 °C (optimum at 30 °C), pH 4.0-8.0 (optimum pH 7.0-7.5) and with 0-2.5% NaCl (w/v; optimum, 0.5 %). Strain YX-27T could tolerate up to 6.0 mM glufosinate. Strain YX-27T showed the highest 16S rRNA gene sequence similarity to Paenibacillus tianjinensis TB2019T (96.17 %), followed by Paenibacillus odorifer DSM 1539T (96.15 %), Paenibacillus sophorae S27T (96.04 %), Paenibacillus apii 7124T (96.02 %) and Paenibacillus stellifer DSM 14472T (95.87 %). The phylogenetic tree based on genome and 16S rRNA gene sequences indicated that strain YX-27T was clustered in the genus Paenibacillus but formed a separate clade. The genome size of YX-27T was 5.22 Mb with a G+C content of 57.5 mol%. The average nucleotide identity and digital DNA-DNA hybridization values between the genomes of strain YX-27T and 12 closely related type strains ranged from 70.8 to 74.8% and 19.8 to 23.0 %, respectively. The major cellular fatty acids were C16 : 0, anteiso-C15 : 0 and iso-C16 : 0. The major polar lipids were one diphosphatidylglycerol, one phosphatidylethanolamine, one phosphatidylglycerol, one phospholipid, four aminophospholipids and four unidentified lipids. The predominant respiratory quinone was MK-7. Based on phylogenetic, genomic, chemotaxonomic and phenotypic data, strain YX-27T was considered to represent a novel species for which the name Paenibacillus glufosinatiresistens sp. nov. is proposed, with YX-27T (=MCCC 1K08803T= KCTC 43611T) as the type strain.


Asunto(s)
Aminobutiratos , Ácidos Grasos , Paenibacillus , Ácidos Grasos/química , Aguas del Alcantarillado , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Composición de Base , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Fosfolípidos/química
2.
Lett Appl Microbiol ; 76(2)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36708165

RESUMEN

The preparation of Escherichia coli competent cells by calcium chloride is a common method in molecular biology, but the mechanism is poorly understood. In a previous study, using transcriptomics and proteomics approaches, we found that the expression pattern of the gene loiP was upregulated by CaCl2. In order to investigate the function of the loiP gene in Ca2+- mediated formation of competent cells of E. coli DH5α, the loiP gene deletion strains were constructed by the lambda-derived Red homologous recombination technique. Then, the cell morphology, transformation efficiency, and cell membrane changes of the competent cells of the mutant strain were further explored. Compared with the wild-type E. coli DH5α, the mutant strains have no significant differences in the morphology, growth characteristics, and the permeability of the intracellular membrane. However, the transformation efficiencies of the mutant strains to plasmids of different sizes were significantly reduced, and the permeability of the outer membrane decreased by 2.94 times. These results indicate that the deletion of gene loiP may directly affect the transformation efficiency and outer membrane permeability of E. coli competent cells.


Asunto(s)
Calcio , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Calcio/metabolismo , Permeabilidad de la Membrana Celular , Plásmidos , Iones/metabolismo , Permeabilidad
3.
Int J Mol Sci ; 23(17)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36077243

RESUMEN

Glucose oxidase, which uses molecular oxygen as an electron acceptor to specifically catalyze the conversion of ß-d-glucose to gluconic acid and hydrogen peroxide (H2O2), has been considered an important enzyme in increasing environmental sustainability and food security. However, achieving the high yield, low price and high activity required for commercial viability remains challenging. In this review, we first present a brief introduction, looking at the sources, characteristics, catalytic process, and applications of glucose oxidase. Then, the predictive structures of glucose oxidase from two different sources are comparatively discussed. We summarize the inhibitors of glucose oxidase. Finally, we highlight how the production of glucose oxidase can be improved by optimizing the culture conditions and microbial metabolic engineering.


Asunto(s)
Glucosa Oxidasa , Peróxido de Hidrógeno , Catálisis , Glucosa/metabolismo , Glucosa Oxidasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Oxígeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA