Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Pathog ; 19(3): e1011241, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36930690

RESUMEN

Dengue virus (DENV) infection can induce life-threatening dengue hemorrhagic fever/dengue shock syndrome in infected patients. DENV is a threat to global health due to its growing numbers and incidence of infection in the last 50 years. During infection, DENV expresses ten structural and nonstructural proteins modulating cell responses to benefit viral replication. However, the lack of knowledge regarding the cellular proteins and their functions in enhancing DENV pathogenesis impedes the development of antiviral drugs and therapies against fatal DENV infection. Here, we identified that integrin-linked kinase (ILK) is a novel enhancing factor for DENV infection by suppressing type I interferon (IFN) responses. Mechanistically, ILK binds DENV NS1 and NS3, activates Akt and Erk, and induces NF-κB-driven suppressor of cytokine signaling 3 (SOCS3) expression. Elevated SOCS3 in DENV-infected cells inhibits phosphorylation of STAT1/2 and expression of interferon-stimulated genes (ISGs). Inhibiting ILK, Akt, or Erk activation abrogates SOCS3 expression. In DENV-infected mice, the treatment of an ILK inhibitor significantly reduces viral loads in the brains, disease severity, and mortality rate. Collectively, our results show that ILK is a potential therapeutic target against DENV infection.


Asunto(s)
Virus del Dengue , Dengue , Interferón Tipo I , Animales , Ratones , Virus del Dengue/fisiología , Proteínas Proto-Oncogénicas c-akt , Replicación Viral , Interferón Tipo I/uso terapéutico
2.
PLoS Pathog ; 18(4): e1010469, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35486576

RESUMEN

Dengue virus (DENV) which infects about 390 million people per year in tropical and subtropical areas manifests various disease symptoms, ranging from fever to life-threatening hemorrhage and even shock. To date, there is still no effective treatment for DENV disease, but only supportive care. DENV nonstructural protein 1 (NS1) has been shown to play a key role in disease pathogenesis. Recent studies have shown that anti-DENV NS1 antibody can provide disease protection by blocking the DENV-induced disruption of endothelial integrity. We previously demonstrated that anti-NS1 monoclonal antibody (mAb) protected mice from all four serotypes of DENV challenge. Here, we generated humanized anti-NS1 mAbs and transferred them to mice after DENV infection. The results showed that DENV-induced prolonged bleeding time and skin hemorrhage were reduced, even several days after DENV challenge. Mechanistic studies showed the ability of humanized anti-NS1 mAbs to inhibit NS1-induced vascular hyperpermeability and to elicit Fcγ-dependent complement-mediated cytolysis as well as antibody-dependent cellular cytotoxicity of cells infected with four serotypes of DENV. These results highlight humanized anti-NS1 mAb as a potential therapeutic agent in DENV infection.


Asunto(s)
Virus del Dengue , Dengue , Animales , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales Humanizados , Dengue/prevención & control , Modelos Animales de Enfermedad , Hemorragia/etiología , Humanos , Ratones , Proteínas no Estructurales Virales/metabolismo
3.
Anal Chem ; 95(41): 15217-15226, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37800729

RESUMEN

Dengue is a viral disease transmitted by Aedes aegypti mosquitoes. According to the World Health Organization, about half of the world's population is at risk of dengue. There are four serotypes of the dengue virus. After infection with one serotype, it will be immune to such a serotype. However, subsequent infection with other serotypes will increase the risk of severe outcomes, e.g., dengue hemorrhagic fever, dengue shock syndrome, and even death. Since severe dengue is challenging to predict and lacks molecular markers, we aim to build a multiplexed Flavivirus protein microarray (Flaviarray) that includes all of the common Flaviviruses to profile the humoral immunity and cross-reactivity in the dengue patients with different outcomes. The Flaviarrays we fabricated contained 17 Flavivirus antigens with high reproducibility (R-square = 0.96) and low detection limits (172-214 pg). We collected serums from healthy subjects (n = 36) and dengue patients within 7 days after symptom onset (mild dengue (n = 21), hospitalized nonsevere dengue (n = 29), and severe dengue (n = 36)). After profiling the serum antibodies using Flaviarrays, we found that patients with severe dengue showed higher IgG levels against multiple Flavivirus antigens. With logistic regression, we found groups of markers with high performance in distinguishing dengue patients from healthy controls as well as hospitalized from mild cases (AUC > 0.9). We further reported some single markers that were suitable to separate dengue patients from healthy controls (AUC > 0.9) and hospitalized from mild outcomes (AUC > 0.8). Together, Flaviarray is a valuable tool to profile antibody specificities, uncover novel markers for decision-making, and shed some light on early preventions and treatments.


Asunto(s)
Virus del Dengue , Dengue , Flavivirus , Dengue Grave , Animales , Humanos , Dengue/diagnóstico , Anticuerpos Antivirales , Análisis por Matrices de Proteínas , Reproducibilidad de los Resultados , Antígenos Virales
4.
IUBMB Life ; 74(2): 170-179, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34553486

RESUMEN

Autophagy is not only an intracellular recycling degradation system that maintains cellular homeostasis but is also a component of innate immunity that contributes to host defense against viral infection. The viral components as well as viral particles trapped in autophagosomes can be delivered to lysosomes for degradation. Abundant evidence indicates that dengue virus (DENV) has evolved the potent ability to hijack or subvert autophagy process for escaping host immunity and promoting viral replication. Moreover, autophagy is often required to deliver viral components to pattern recognition receptors signaling for interferon (IFN)-mediated viral elimination. Hence, this review summarizes DENV-induced autophagy, which exhibits dual effects on proviral activity of promoting replication and antiviral activity to eliminating viral particles.


Asunto(s)
Virus del Dengue , Dengue , Virosis , Autofagia , Dengue/genética , Humanos , Inmunidad Innata , Transducción de Señal , Replicación Viral
5.
J Immunol ; 203(7): 1909-1917, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31451673

RESUMEN

Dengue virus (DENV) causes a range of illness, including dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. DENV nonstructural protein (NS) 1 has been considered to be a desirable vaccine candidate for its ability to induce Ab and complement-dependent cytolysis of DENV-infected cells as well as to block the pathogenic effects of NS1. However a potential drawback of NS1 as a vaccine is that anti-DENV NS1 Abs can lead to endothelial cell damage and platelet dysfunction by antigenic cross-reactivity. Therefore, we modified the DENV NS1 by replacing the C-terminal cross-reactive epitopes with the corresponding region of Japanese encephalitis virus NS1 to generate a chimeric DJ NS1 protein. Active immunization with DJ NS1 induced a strong Ab response. To enhance cellular immunity, we further combined DJ NS1 with DENV NS3 to immunize mice and showed activation of Ag-specific CD4+ and CD8+ T cells in addition to Ab responses. We further detected NS3-specific CTL activities as well as CD107a expression of effector cells. Importantly, the protective effects attributed by DJ NS1 and NS3 immunization were demonstrated in a DENV-infected mouse model by reduced viral titers, soluble NS1 levels, mouse tail bleeding time, and vascular leakage at skin injection sites. Collectively, the results from this study reveal the humoral and cellular immune responses and the protective effects conferred by DJ NS1 and NS3 immunization in the mouse model of DENV infection and provide a potential strategy for dengue vaccine design.


Asunto(s)
Anticuerpos Antivirales/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Vacunas contra el Dengue/inmunología , Virus del Dengue/inmunología , Dengue/prevención & control , Inmunidad Celular , Inmunización , Proteínas no Estructurales Virales/inmunología , Animales , Reacciones Cruzadas , Dengue/inmunología , Dengue/patología , Epítopos/inmunología , Masculino , Ratones
6.
Int J Mol Sci ; 21(24)2020 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-33352639

RESUMEN

Dengue virus (DENV) infection is a significant public health threat in tropical and subtropical regions; however, there is no specific antiviral drug. Accumulated studies have revealed that DENV infection induces several cellular responses, including autophagy and apoptosis. The crosstalk between autophagy and apoptosis is associated with the interactions among components of these two pathways, such as apoptotic caspase-mediated cleavage of autophagy-related proteins. Here, we show that DENV-induced autophagy inhibits early cell apoptosis and hence enhances DENV replication. Later, the apoptotic activities are elevated to suppress autophagy through cleavage of Beclin-1, an essential autophagy-related protein. Inhibition of cleavage of Beclin-1 by a pan-caspase inhibitor, Z-VAD, increases both autophagy and viral replication. Regarding the mechanism, we further found that DENV nonstructural protein 1 (NS1) is able to interact with Beclin-1 during DENV infection. The interaction between Beclin-1 and NS1 attenuates Beclin-1 cleavage and facilitates autophagy to prevent cell apoptosis. Our study suggests a novel mechanism whereby NS1 preserves Beclin-1 for maintaining autophagy to antagonize early cell apoptosis; however, elevated caspases trigger apoptosis by degrading Beclin-1 in the late stage of infection. These findings suggest implications for anti-DENV drug design.


Asunto(s)
Beclina-1/metabolismo , Caspasas/metabolismo , Virus del Dengue/aislamiento & purificación , Dengue/patología , Dengue/virología , Proteínas no Estructurales Virales/metabolismo , Células A549 , Aedes , Animales , Autofagia , Dengue/metabolismo , Humanos
7.
J Immunol ; 199(8): 2834-2844, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28904127

RESUMEN

Dengue virus (DENV) is the causative agent of dengue fever, dengue hemorrhagic fever, and dengue shock syndrome and is endemic to tropical and subtropical regions of the world. Our previous studies showed the existence of epitopes in the C-terminal region of DENV nonstructural protein 1 (NS1) which are cross-reactive with host Ags and trigger anti-DENV NS1 Ab-mediated endothelial cell damage and platelet dysfunction. To circumvent these potentially harmful events, we replaced the C-terminal region of DENV NS1 with the corresponding region from Japanese encephalitis virus NS1 to create chimeric DJ NS1 protein. Passive immunization of DENV-infected mice with polyclonal anti-DJ NS1 Abs reduced viral Ag expression at skin inoculation sites and shortened DENV-induced prolonged bleeding time. We also investigated the therapeutic effects of anti-NS1 mAb. One mAb designated 2E8 does not recognize the C-terminal region of DENV NS1 in which host-cross-reactive epitopes reside. Moreover, mAb 2E8 recognizes NS1 of all four DENV serotypes. We also found that mAb 2E8 caused complement-mediated lysis in DENV-infected cells. In mouse model studies, treatment with mAb 2E8 shortened DENV-induced prolonged bleeding time and reduced viral Ag expression in the skin. Importantly, mAb 2E8 provided therapeutic effects against all four serotypes of DENV. We further found that mAb administration to mice as late as 1 d prior to severe bleeding still reduced prolonged bleeding time and hemorrhage. Therefore, administration with a single dose of mAb 2E8 can protect mice against DENV infection and pathological effects, suggesting that NS1-specific mAb may be a therapeutic option against dengue disease.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Virus del Dengue/inmunología , Dengue/terapia , Hemorragia/prevención & control , Inmunoterapia/métodos , Proteínas no Estructurales Virales/metabolismo , Animales , Citotoxicidad Celular Dependiente de Anticuerpos , Autoantígenos/inmunología , Células Cultivadas , Reacciones Cruzadas , Dengue/complicaciones , Dengue/inmunología , Virus del Dengue/genética , Modelos Animales de Enfermedad , Virus de la Encefalitis Japonesa (Especie)/genética , Epítopos/genética , Hemorragia/etiología , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Ratones Noqueados , Proteínas Recombinantes/inmunología , Factor de Transcripción STAT1/genética , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/inmunología
8.
J Biomed Sci ; 25(1): 77, 2018 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-30409217

RESUMEN

Dengue virus, the causative agent of dengue disease which may have hemorrhagic complications, poses a global health threat. Among the numerous target cells for dengue virus in humans are monocytes, macrophages and mast cells which are important regulators of vascular integrity and which undergo dramatic cellular responses after infection by dengue virus. The strategic locations of these three cell types, inside blood vessels (monocytes) or outside blood vessels (macrophages and mast cells) allow them to respond to dengue virus infection with the production of both intracellular and secretory factors which affect virus replication, vascular permeability and/or leukocyte extravasation. Moreover, the expression of Fc receptors on the surface of monocytes, macrophages and mast cells makes them important target cells for antibody-enhanced dengue virus infection which is a major risk factor for severe dengue disease, involving hemorrhage. Collectively, these features of monocytes, macrophages and mast cells contribute to both beneficial and harmful responses of importance to understanding and controlling dengue infection and disease.


Asunto(s)
Virus del Dengue/fisiología , Dengue/virología , Macrófagos/virología , Mastocitos/virología , Monocitos/virología , Dengue Grave/virología
9.
Biomacromolecules ; 19(6): 2278-2285, 2018 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-29722966

RESUMEN

Enhancing the immune response to vaccines and minimizing the need for repeated inoculations remain a challenge in clinical vaccination. This study developed a composite microneedle (MN), composed of a sodium hyaluronate (HA) tip and a chitosan base, for biphasic antigen release and evaluated the potential of using this MN formulation as an intradermal delivery system for single-dose vaccination. Upon skin insertion, the dissolvable HA tip dissolved within the skin for rapid release of the encapsulated antigens, thus priming the immune system, while the biodegradable chitosan base remained in the dermis for prolonged antigen release for 4 weeks, thus further boosting the stimulated immunity. Our results showed that a single immunization with the HA/chitosan MN containing ovalbumin (OVA) (100 µg × 1) stimulated both T helper type 1 (Th1) and Th2 immune responses in rats and induced considerably higher and more durable antibody responses than a traditional two-dose (100 µg OVA × 2) or double-dose (200 µg OVA × 1) subcutaneous vaccination. Thus, the proposed MN exerts strong adjuvanticity to greatly augment the antigen's immunogenicity. Moreover, given its unique rapid and sustained release properties, the HA/chitosan MN formulation has the potential to replace the conventional prime-boost regimen to serve as an effective single-dose vaccine formulation.


Asunto(s)
Quitosano/química , Ácido Hialurónico/química , Inmunización/métodos , Agujas , Animales , Inyecciones Intradérmicas , Ovalbúmina/inmunología , Ovalbúmina/farmacología , Ratas , Ratas Sprague-Dawley , Porcinos , Células TH1/inmunología , Células Th2/inmunología
10.
Lab Invest ; 97(5): 602-614, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28240747

RESUMEN

Dengue virus (DENV) infection causes dengue fever, dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS). DHF/DSS patients have been reported to have increased levels of urinary histamine, chymase, and tryptase, which are major granule-associated mediators from mast cells. Previous studies also showed that DENV-infected human mast cells induce production of proinflammatory cytokines and chemokines, suggesting a role played by mast cells in vascular perturbation as well as leukocyte recruitment. In this study, we show that DENV but not UV-inactivated DENV enhanced degranulation of mast cells and production of chemokines (MCP-1, RANTES, and IP-10) in a mouse model. We have previously shown that antibodies (Abs) against a modified DENV nonstructural protein 1 (NS1), designated DJ NS1, provide protection in mice against DENV challenge. In the present study, we investigate the effects of DJ NS1 Abs on mast cell-associated activities. We showed that administration of anti-DJ NS1 Abs into mice resulted in a reduction of mast cell degranulation and macrophage infiltration at local skin DENV infection sites. The production of DENV-induced chemokines (MCP-1, RANTES, and IP-10) and the percentages of tryptase-positive activated mast cells were also reduced by treatment with anti-DJ NS1 Abs. These results indicate that Abs against NS1 protein provide multiple therapeutic benefits, some of which involve modulating DENV-induced mast cell activation.Laboratory Investigation advance online publication, 27 February 2017; doi:10.1038/labinvest.2017.10.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA