Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Br J Pharmacol ; 181(2): 257-272, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-36775813

RESUMEN

Programmed cell death protein-1 (PD-1)/programmed death ligand-1 (PD-L1) immune checkpoint blockade as a breakthrough in cancer immunotherapy has shown unprecedented positive outcomes in the clinic. However, the overall effectiveness of PD-L1 antibody is less than expected. An increasing number of studies have demonstrated that PD-L1 is widely distributed and expressed not only on the cell membrane but also on the inside of the cells as well as on the extracellular vesicles secreted by tumour cells. Both endogenous and exogenous PD-L1 play significant roles in influencing the therapeutic effect of anti-tumour immunity. Herein, we mainly focused on the distribution and function of PD-L1 and further summarized the potential targeted therapeutic strategies. More importantly, in addition to taking the overall expression abundance of PD-L1 as a predictive indicator for selecting corresponding PD-1/PD-L1 monoclonal antibodies (mAbs), we also proposed that personalized combination therapies based on the different distribution of PD-L1 are worth attention to achieve more efficient and effective therapeutic outcomes in cancer patients. LINKED ARTICLES: This article is part of a themed issue on Cancer Microenvironment and Pharmacological Interventions. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.2/issuetoc.


Asunto(s)
Neoplasias , Receptor de Muerte Celular Programada 1 , Humanos , Antígeno B7-H1 , Ligandos , Neoplasias/tratamiento farmacológico , Inmunoterapia , Microambiente Tumoral
2.
Front Immunol ; 13: 887775, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35529843

RESUMEN

[This corrects the article DOI: 10.3389/fimmu.2021.747914.].

3.
Front Immunol ; 12: 747914, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34745119

RESUMEN

The human body and its microbiome constitute a highly delicate system. The gut microbiome participates in the absorption of the host's nutrients and metabolism, maintains the microcirculation, and modulates the immune response. Increasing evidence shows that gut microbiome dysbiosis in the body not only affects the occurrence and development of tumors but also tumor prognosis and treatment. Microbiome have been implicated in tumor control in patients undergoing anti- angiogenesis therapy and immunotherapy. In cases with unsatisfactory responses to chemotherapy, radiotherapy, and targeted therapy, appropriate adjustment of microbes abundance is considered to enhance the treatment response. Here, we review the current research progress in cancer immunotherapy and anti- angiogenesis therapy, as well as the unlimited potential of their combination, especially focusing on how the interaction between intestinal microbiota and the immune system affects cancer pathogenesis and treatment. In addition, we discuss the effects of microbiota on anti-cancer immune response and anti- angiogenesis therapy, and the potential value of these interactions in promoting further research in this field.


Asunto(s)
Inhibidores de la Angiogénesis/uso terapéutico , Inmunoterapia , Microbiota , Neoplasias/terapia , Inhibidores de la Angiogénesis/farmacología , Carcinogénesis/inmunología , Ensayos Clínicos Fase III como Asunto , Terapia Combinada , Dieta , Medicamentos Herbarios Chinos/farmacología , Disbiosis/inmunología , Disbiosis/metabolismo , Humanos , Inhibidores de Puntos de Control Inmunológico , Microbiota/efectos de los fármacos , Microbiota/inmunología , Microbiota/fisiología , Neoplasias/irrigación sanguínea , Neoplasias/inmunología , Neoplasias/microbiología , Probióticos , Simbiosis , Escape del Tumor
4.
Oxid Med Cell Longev ; 2021: 7037786, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34804370

RESUMEN

Pathological angiogenesis, as exhibited by aberrant vascular structure and function, has been well deemed to be a hallmark of cancer and various ischemic diseases. Therefore, strategies to normalize vasculature are of potential therapeutic interest in these diseases. Recently, identifying bioactive compounds from medicinal plant extracts to reverse abnormal vasculature has been gaining increasing attention. Tanshinone IIA (Tan IIA), an active component of Salvia miltiorrhiza, has been shown to play significant roles in improving blood circulation and delaying tumor progression. However, the underlying mechanisms responsible for the therapeutic effects of Tan IIA are not fully understood. Herein, we established animal models of HT-29 human colon cancer xenograft and hind limb ischemia to investigate the role of Tan IIA in regulating abnormal vasculature. Interestingly, our results demonstrated that Tan IIA could significantly promote the blood flow, alleviate the hypoxia, improve the muscle quality, and ameliorate the pathological damage after ischemic insult. Meanwhile, we also revealed that Tan IIA promoted the integrity of vascular structure, reduced vascular leakage, and attenuated the hypoxia in HT-29 tumors. Moreover, the circulating angiopoietin 2 (Ang2), which is extremely high in these two pathological states, was substantially depleted in the presence of Tan IIA. Also, the activation of Tie2 was potentiated by Tan IIA, resulting in decreased vascular permeability and elevated vascular integrity. Mechanistically, we uncovered that Tan IIA maintained vascular stability by targeting the Ang2-Tie2-AKT-MLCK cascade. Collectively, our data suggest that Tan IIA normalizes vessels in tumors and ischemic injury via regulating the Ang2/Tie2 signaling pathway.


Asunto(s)
Abietanos/farmacología , Neoplasias del Colon/irrigación sanguínea , Regulación de la Expresión Génica/efectos de los fármacos , Isquemia/tratamiento farmacológico , Neovascularización Patológica/prevención & control , Receptor TIE-2/antagonistas & inhibidores , Proteínas de Transporte Vesicular/antagonistas & inhibidores , Inhibidores de la Angiogénesis/farmacología , Animales , Antineoplásicos Fitogénicos/farmacología , Apoptosis , Proliferación Celular , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Humanos , Isquemia/metabolismo , Isquemia/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Pancreas ; 50(8): 1202-1211, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34714285

RESUMEN

OBJECTIVE: The intestinal barrier injury caused by severe acute pancreatitis (SAP) can induce enterogenous infection, further aggravating the inflammatory reactions and immune responses. This study aimed to test the hypothesis that emodin protects the intestinal function and is involved in the immune response in SAP. METHODS: The network pharmacology was established using the Swiss target prediction and pathway enrichment analysis. The SAP mice model was induced by cerulein (50 µg/kg) and lipopolysaccharide (10 mg/kg) hyperstimulation. The pharmacological effect of emodin in treating SAP was evaluated at mRNA and protein levels by various methods. RESULTS: The network analysis provided the connectivity between the targets of emodin and the intestinal barrier-associated proteins and predicted the BAX/Bcl-2/caspase 3 signaling pathway. Emodin alleviated the pathological damages to the pancreas and intestine and reduced the high concentrations of serum amylase and cytokines in vivo. Emodin increased the expression of intestinal barrier-related proteins and reversed the changes in the apoptosis-related proteins in the intestine. Simultaneously, emodin regulated the ratio of T helper type 1 (TH1), TH2, TH17, γδ T cells, and interferon γ/interleukin 17 producing γδ T cells. CONCLUSIONS: These findings partly verified the mechanism underlying the regulation of the intestinal barrier and immune response by emodin.


Asunto(s)
Apoptosis/efectos de los fármacos , Emodina/farmacología , Mucosa Intestinal/efectos de los fármacos , Pancreatitis/tratamiento farmacológico , Pancreatitis/inmunología , Animales , Modelos Animales de Enfermedad , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA