RESUMEN
Bromodomain-containing protein 4 (BRD4) is a cancer therapeutic target in ongoing clinical trials disrupting primarily BRD4-regulated transcription programs. The role of BRD4 in cancer has been attributed mainly to the abundant long isoform (BRD4-L). Here we show, by isoform-specific knockdown and endogenous protein detection, along with transgene expression, the less abundant BRD4 short isoform (BRD4-S) is oncogenic while BRD4-L is tumor-suppressive in breast cancer cell proliferation and migration, as well as mammary tumor formation and metastasis. Through integrated RNA-seq, genome-wide ChIP-seq, and CUT&RUN association profiling, we identify the Engrailed-1 (EN1) homeobox transcription factor as a key BRD4-S coregulator, particularly in triple-negative breast cancer. BRD4-S and EN1 comodulate the extracellular matrix (ECM)-associated matrisome network, including type II cystatin gene cluster, mucin 5, and cathepsin loci, via enhancer regulation of cancer-associated genes and pathways. Our work highlights the importance of targeted therapies for the oncogenic, but not tumor-suppressive, activity of BRD4.
Asunto(s)
Neoplasias de la Mama/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiología , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología , Animales , Neoplasias de la Mama/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Genes Homeobox , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Invasividad Neoplásica , Proteínas Nucleares/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas/antagonistas & inhibidores , Proteínas/metabolismo , Transcripción Genética/genética , Neoplasias de la Mama Triple Negativas/genéticaRESUMEN
A Retraction to this paper has been published and can be accessed via a link at the top of the paper.
RESUMEN
Change history: In this Letter, the citation to 'Fig. 4e, f' in the main text should be 'Fig. 3e, f'. This has not been corrected online.
RESUMEN
Dengue virus (DENV) is the most prevalent arthropod-borne viral disease of humans and has a major impact on global public health. There is no clinically approved drugs for DENV infection. Since intracellular VEGFR2 is increased in DENV infected patients, we thus hypothesized that VEGFR2 participated DENV proliferation and its inhibitors could be served as antivirals against DENV. Actually our results showed that VEGFR2 was induced by DENV infection. Also the agonist of VEGFR2, VEGF-A, promoted DENV proliferation. Therefore, we screened the inhibitors of VEGFR2 and found that brivanib alaninate (brivanib) showed the best anti-DENV ability with the lowest cellular cytotoxicity. Mechanically, our results indicated VEGFR2 directly interacted with PTP1B to dephosphorylate AMPK to provide lipid environment for viral replication. However, this effect could be inhibited by brivanib, which significantly reversed the reduction of AMPK phosphorylation caused by DENV infection, thus improving the cellular lipid environment. Moreover, the antiviral effect of brivanib could be reversed by AMPK inhibitor, Compound C. In addition, oral administration of brivianib (20-50â¯mg/kg/day) clearly improved the survival rate of DENV2 infection, and this effect was abolished in accompanied with Compound C (10mg/kg/day). Collectively, our study disclosed the mechanism of VEGFR2 in DENV2 and evaluated the antiviral ability of brivanib, which deserved more attention for clinical usage in DENV infection.
Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Alanina/análogos & derivados , Antivirales/farmacología , Virus del Dengue/efectos de los fármacos , Dengue/tratamiento farmacológico , Células Endoteliales/efectos de los fármacos , Triazinas/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Replicación Viral/efectos de los fármacos , Alanina/farmacología , Animales , Células Cultivadas , Dengue/enzimología , Dengue/virología , Virus del Dengue/crecimiento & desarrollo , Virus del Dengue/patogenicidad , Modelos Animales de Enfermedad , Células Endoteliales/enzimología , Células Endoteliales/virología , Interacciones Huésped-Patógeno , Humanos , Ratones , Fosforilación , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Transducción de Señal , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismoRESUMEN
Milk lipids provide a large proportion of energy, nutrients, essential fatty acids, and signaling molecules for the newborns, the synthesis of which is a tightly controlled process. Dysregulated milk lipid production and composition may be detrimental to the growth, development, health and survival of the newborns. Many genetically modified animal models have contributed to our understanding of milk lipid regulation in the lactating mammary gland. In this review, we discuss recent advances in our knowledge of the mechanisms that control milk lipid biosynthesis and secretion during lactation, and how maternal genetic and dietary defects impact milk lipid composition and consequently offspring traits.
Asunto(s)
Lactancia/fisiología , Lípidos/análisis , Glándulas Mamarias Animales/metabolismo , Leche/química , Animales , Animales Recién Nacidos , Femenino , Regulación de la Expresión Génica , Lactancia/genética , Metabolismo de los Lípidos , Lípidos/biosíntesis , Leche/metabolismo , Proteínas de Unión a los Elementos Reguladores de Esteroles/genética , Proteínas de Unión a los Elementos Reguladores de Esteroles/metabolismoRESUMEN
Bone-resorbing osteoclasts significantly contribute to osteoporosis and bone metastases of cancer. MicroRNAs play important roles in physiology and disease, and present tremendous therapeutic potential. Nonetheless, how microRNAs regulate skeletal biology is underexplored. Here we identify miR-34a as a novel and critical suppressor of osteoclastogenesis, bone resorption and the bone metastatic niche. miR-34a is downregulated during osteoclast differentiation. Osteoclastic miR-34a-overexpressing transgenic mice exhibit lower bone resorption and higher bone mass. Conversely, miR-34a knockout and heterozygous mice exhibit elevated bone resorption and reduced bone mass. Consequently, ovariectomy-induced osteoporosis, as well as bone metastasis of breast and skin cancers, are diminished in osteoclastic miR-34a transgenic mice, and can be effectively attenuated by miR-34a nanoparticle treatment. Mechanistically, we identify transforming growth factor-ß-induced factor 2 (Tgif2) as an essential direct miR-34a target that is pro-osteoclastogenic. Tgif2 deletion reduces bone resorption and abolishes miR-34a regulation. Together, using mouse genetic, pharmacological and disease models, we reveal miR-34a as a key osteoclast suppressor and a potential therapeutic strategy to confer skeletal protection and ameliorate bone metastasis of cancers.
Asunto(s)
Neoplasias Óseas/prevención & control , Neoplasias Óseas/secundario , Diferenciación Celular/genética , MicroARNs/genética , Osteoclastos/patología , Osteoporosis/prevención & control , Proteínas Represoras/deficiencia , Animales , Secuencia de Bases , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Resorción Ósea/tratamiento farmacológico , Resorción Ósea/genética , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Eliminación de Gen , Proteínas de Homeodominio/antagonistas & inhibidores , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Masculino , Neoplasias Mamarias Animales/patología , Ratones , Ratones Transgénicos , MicroARNs/farmacología , MicroARNs/uso terapéutico , Trasplante de Neoplasias , Tamaño de los Órganos/efectos de los fármacos , Osteoclastos/efectos de los fármacos , Osteoporosis/genética , Osteoporosis/patología , Ovariectomía , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Neoplasias Cutáneas/patología , Transgenes , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Dengue fever is an acute infectious disease caused by dengue virus (DENV) and transmitted by Aedes mosquitoes. There is no effective vaccine or antiviral drug available to date to prevent or treat dengue disease. Recently, RNA-dependent RNA polymerase (RdRp), a class of polymerases involved in the synthesis of complementary RNA strands using single-stranded RNA, has been proposed as a promising drug target. Hence, we screened new molecules against DENV RdRp using our previously constructed virtual screening method. Mol-5, [1,2,4]triazolo[1,5-a]pyrimidine derivative, was screened out from an antiviral compound library (~8000 molecules). Using biophysical methods, we confirmed the direct interactions between mol-5 and purified DENV RdRp protein. In luciferase assay, mol-5 inhibited NS5-RdRp activity with an IC50 value of 1.28 ± 0.2 µM. In the cell-based cytopathic effect (CPE) assay, mol-5 inhibited DENV2 infectivity with an EC50 value of 4.5 ± 0.08 µM. Mol-5 also potently inhibited DENV2 RNA replication as observed in immunofluorescence assay and qRT-PCR. Both the viral structural (E) and non-structural (NS1) proteins of DENV2 were dose-dependently decreased by treatment with mol-5 (2.5-10 µM). Mol-5 treatment suppressed DENV2-induced inflammation in host cells, but had no direct effect on host defense (JAK/STAT-signaling pathway). These results demonstrate that mol-5 could be a novel RdRp inhibitor amenable for further research and development.
Asunto(s)
Antivirales/farmacología , Virus del Dengue/efectos de los fármacos , Dengue/tratamiento farmacológico , Inflamación/tratamiento farmacológico , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , Proteínas no Estructurales Virales/antagonistas & inhibidores , Animales , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Cricetinae , Dengue/metabolismo , Dengue/virología , Virus del Dengue/enzimología , Virus del Dengue/metabolismo , Inflamación/metabolismo , Inflamación/virología , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Pirimidinas/farmacología , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Recombinantes/metabolismo , Resonancia por Plasmón de Superficie , Triazoles/farmacología , Proteínas no Estructurales Virales/metabolismoRESUMEN
Macrophages are prominent immune cells in the tumor microenvironment that exert potent effects on cancer metastasis. However, the signals and receivers for the tumor-macrophage communication remain enigmatic. Here, we show that G protein-coupled receptor 132 (Gpr132) functions as a key macrophage sensor of the rising lactate in the acidic tumor milieu to mediate the reciprocal interaction between cancer cells and macrophages during breast cancer metastasis. Lactate activates macrophage Gpr132 to promote the alternatively activated macrophage (M2)-like phenotype, which, in turn, facilitates cancer cell adhesion, migration, and invasion. Consequently, Gpr132 deletion reduces M2 macrophages and impedes breast cancer lung metastasis in mice. Clinically, Gpr132 expression positively correlates with M2 macrophages, metastasis, and poor prognosis in patients with breast cancer. These findings uncover the lactate-Gpr132 axis as a driver of breast cancer metastasis by stimulating tumor-macrophage interplay, and reveal potential new therapeutic targets for breast cancer treatment.
Asunto(s)
Neoplasias de la Mama/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ácido Láctico/metabolismo , Macrófagos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Adhesión Celular , Proteínas de Ciclo Celular/deficiencia , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Movimiento Celular , Femenino , Humanos , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Activación de Macrófagos , Macrófagos/inmunología , Neoplasias Mamarias Experimentales/inmunología , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Invasividad Neoplásica , Pronóstico , Receptores Acoplados a Proteínas G/deficiencia , Receptores Acoplados a Proteínas G/genética , Microambiente TumoralRESUMEN
For all newborn mammals, mother's milk is the perfect nourishment, crucial for their postnatal development. Here we report that, unexpectedly, maternal western diet consumption in mice causes the production of toxic milk that contains excessive long chain and saturated fatty acids, which triggers ceramide accumulation and inflammation in the nursing neonates, manifested as alopecia. This neonatal toxicity requires Toll-like-receptors (TLR), but not gut microbiota, because TLR2/4 deletion or TLR4 inhibition confers resistance, whereas germ-free mice remain sensitive. These findings unravel maternal western diet-induced inflammatory milk secretion as a novel aspect of the metabolic syndrome at the maternal offspring interface.
Asunto(s)
Dieta/efectos adversos , Inflamación/patología , Leche/toxicidad , Madres , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/metabolismo , Mundo Occidental , Animales , Animales Recién Nacidos , Ceramidas/metabolismo , Ácidos Grasos/metabolismo , Femenino , Eliminación de Gen , Vida Libre de Gérmenes/efectos de los fármacos , Lactancia/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Leche/metabolismo , Embarazo , Receptor Toll-Like 4/antagonistas & inhibidoresRESUMEN
Dengue virus (DENV) annually infects 400 million people worldwide. Unfortunately, there is lack of widely protective vaccine or drugs against DENV. The viral RNA-dependent RNA polymerase (RdRp) of NS5 protein is highly conserved among different DENV subtypes, thus presenting itself as an attractive target for drug design. In the current research, SPRi was performed to screen compounds against DENV2 RdRp and 5(1H)-Quinazolinone,2-(4-bromophenyl)-2,3,4,6,7,8-hexahydro-7,7-dimethyl-1,3-diphenyl (Q63) was successfully screened out with a KD of 0.9 µM. Then, ITC and molecular docking assay was performed to access the binding mechanism between Q63 and DENV2 RdRp. Meanwhile, Q63 also decreased the intermediate dsRNA production, which was the product of RdRp. Further the antiviral effects of Q63 were evaluated on mosquito C6/36 cells and mammalian BHK-21 cells. Q63 reduced CPE and cell toxicity effect after DENV2 infection on C6/36 and BHK-21 cells, with an EC50 of 2.08 µM. Time of addition assay revealed that Q63 affected the early genome RNA replication stage, including genome RNA replication. In addition, Q63 down-regulated STAT1 phosphorylation, ISG15 and ISG54 after DENV2 infection. In summary, Q63 was found to be a novel RdRp non-nucleoside inhibitor and a potential lead compound for coping with DENV infectious disease in the future.
Asunto(s)
Antivirales/farmacología , Virus del Dengue/efectos de los fármacos , Quinazolinonas/farmacología , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , Proteínas Virales/antagonistas & inhibidores , Aedes , Animales , Línea Celular , Cricetinae , Virus del Dengue/patogenicidad , Virus del Dengue/fisiología , Replicación Viral/efectos de los fármacosRESUMEN
Bone metastasis is a deadly complication of cancers arising from many different primary tumor locations. Cross talk between cancer and bone cells is a well-established driver of bone metastasis, and recent work reveals microRNA (miRNA) as key players in this communication. Functional significance of miRNA was first demonstrated in cancer cells and has now also been documented in bone cell differentiation and skeletal remodeling. Review of recent literature highlights how different miRNAs can impact each step of the metastatic process by acting in both tumor and the metastatic niche to exert pleiotropic effects. Additionally, whether a miRNA is ultimately pro- or anti-metastatic dependents on the context-varied or even opposite outcomes can be conferred by the same miRNA in different cancer/cell types. In spite of this complexity, emerging research has provided a wealth of knowledge to uncover the exciting potential of miRNA as new diagnostic tools and therapeutic treatments for cancer bone metastasis.
Asunto(s)
Neoplasias Óseas/genética , Remodelación Ósea/genética , Huesos/metabolismo , Diferenciación Celular/genética , MicroARNs/genética , Osteoblastos , Osteoclastos , Neoplasias Óseas/secundario , Pleiotropía Genética , HumanosRESUMEN
The endocrine hormone fibroblast growth factor 21 (FGF21) is a powerful modulator of glucose and lipid metabolism and a promising drug for type 2 diabetes. Here we identify FGF21 as a potent regulator of skeletal homeostasis. Both genetic and pharmacologic FGF21 gain of function lead to a striking decrease in bone mass. In contrast, FGF21 loss of function leads to a reciprocal high-bone-mass phenotype. Mechanistically, FGF21 inhibits osteoblastogenesis and stimulates adipogenesis from bone marrow mesenchymal stem cells by potentiating the activity of peroxisome proliferator-activated receptor γ (PPAR-γ). Consequently, FGF21 deletion prevents the deleterious bone loss side effect of the PPAR-γ agonist rosiglitazone. Therefore, FGF21 is a critical rheostat for bone turnover and a key integrator of bone and energy metabolism. These results reveal that skeletal fragility may be an undesirable consequence of chronic FGF21 administration.
Asunto(s)
Resorción Ósea/patología , Factores de Crecimiento de Fibroblastos/metabolismo , PPAR gamma/metabolismo , Adipogénesis/efectos de los fármacos , Animales , Médula Ósea/efectos de los fármacos , Médula Ósea/patología , Resorción Ósea/metabolismo , Huesos/efectos de los fármacos , Huesos/metabolismo , Huesos/patología , Resistencia a Medicamentos/efectos de los fármacos , Factores de Crecimiento de Fibroblastos/administración & dosificación , Factores de Crecimiento de Fibroblastos/farmacología , Humanos , Ratones , Ratones Noqueados , Tamaño de los Órganos/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteoblastos/patología , Osteogénesis/efectos de los fármacos , Osteoprotegerina/metabolismo , Ligando RANK/metabolismo , Rosiglitazona , Tiazolidinedionas/farmacologíaRESUMEN
Understanding the heterogeneous intestinal microenvironment is critical to uncover the pathogenesis of inflammatory bowel disease (IBD). Recent advances in single-cell RNA sequencing (scRNA-seq) have identified certain cell types and genes that could contribute to IBD; however, a comprehensively integrated analysis of these scRNA-seq datasets is not yet available. Here we introduce scIBD, a platform for single-cell meta-analysis of IBD with interactive and visualization features, which combines highly curated single-cell datasets in a uniform workflow, enabling identifying rare or less-characterized cell types in IBD and dissecting the commonalities, as well as the differences between ulcerative colitis and Crohn's disease. scIBD also incorporates multifunctional information-including regulon activity, GWAS-implicated risk genes and genes targeted by therapeutics-to infer clinically relevant cell-type specificity. Collectively, scIBD is a user-friendly web-based platform for the community to analyze the transcriptome features and gene regulatory networks associated with the pathogenesis and treatment of IBD at single-cell resolution.
Asunto(s)
Colitis Ulcerosa , Enfermedad de Crohn , Enfermedades Inflamatorias del Intestino , Humanos , Enfermedades Inflamatorias del Intestino/genética , Colitis Ulcerosa/etiología , Enfermedad de Crohn/diagnóstico , TranscriptomaRESUMEN
Programmed death-ligand 1 (PD-L1) is predominantly expressed in the antigen-presenting cells (APCs) that are originated and are abundant in the bone marrow. The roles of PD-L1 in bone cell differentiation and cancer bone metastasis remain unclear. Here we show that PD-L1 antibody or PD-L1 conditional knockout in the hematopoietic or myeloid lineage suppresses osteoclast differentiation in vitro and in vivo. Bone metastases of breast cancer and melanoma are diminished by PD-L1 antibody or PD-L1 deletion in the myeloid lineage. Transcriptional profiling of bone marrow cells reveals that PD-L1 deletion in the myeloid cells upregulates immune-stimulatory genes, leading to increased macrophage M1 polarization, decreased M2 polarization, enhanced IFNγ signaling, and elevated T cell recruitment and activation. All these alterations result in heightened anti-tumor immunity in the cancer microenvironment. Our findings support PD-L1 antibody as a potent therapy for bone metastasis of breast cancer and melanoma by simultaneously suppressing osteoclast and enhancing immunity.
Asunto(s)
Neoplasias de la Mama , Melanoma , Antígeno B7-H1/genética , Neoplasias de la Mama/genética , Femenino , Humanos , Osteogénesis , Microambiente Tumoral/genéticaRESUMEN
Fam20C is a kinase that generates the majority of secreted phosphoproteins and regulates biomineralization. However, its potential roles in bone resorption and breast cancer bone metastasis are unknown. Here we show that Fam20C in the myeloid lineage suppresses osteoclastogenesis and bone resorption, during which, osteopontin (OPN) is the most abundant phosphoprotein secreted in a Fam20C-dependent manner. OPN phosphorylation by Fam20C decreased OPN secretion, and OPN neutralization reduced Fam20C deficiency-induced osteoclast differentiation and bone metastasis. In contrast, Fam20C in breast cancer cells promoted bone metastasis by facilitating the phosphorylation and secretion of BMP4, which in turn enhanced osteoclastogenesis. Mutation of the BMP4 phosphorylation site elevated BMP4 lysosomal degradation and reduced BMP4 secretion. In breast cancer cells, BMP4 depletion or treatment with a BMP4 signaling inhibitor diminished osteoclast differentiation and bone metastasis and abolished Fam20C-mediated regulation of these processes. Collectively, this study discovers distinct roles for Fam20C in myeloid cells and breast cancer cells and highlights OPN and BMP4 as potential therapeutic targets for breast cancer bone metastasis. SIGNIFICANCE: Osteoclastogenesis and bone metastasis are suppressed by myeloid-derived Fam20C, but enhanced by breast cancer-associated Fam20C, uncovering novel Fam20C functions and new therapeutic strategies via targeting Fam20C substrates OPN and BMP4.
Asunto(s)
Proteína Morfogenética Ósea 4/metabolismo , Neoplasias Óseas/secundario , Resorción Ósea/patología , Neoplasias de la Mama/patología , Quinasa de la Caseína I/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Regulación Neoplásica de la Expresión Génica , Osteopontina/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Proteína Morfogenética Ósea 4/genética , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Resorción Ósea/genética , Resorción Ósea/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Quinasa de la Caseína I/genética , Proliferación Celular , Proteínas de la Matriz Extracelular/genética , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Desnudos , Células Mieloides/metabolismo , Células Mieloides/patología , Osteopontina/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Dengue fever is a common arbovirus disease, which has been spread to the entire tropical world. At present, effective drugs for the treatment of dengue fever have not yet appeared, and the dengue vaccines studied in various countries have also experienced severe adverse reactions. Thus it is urgent to find new chemicals against dengue virus. Now we found Sirtuins (SIRTs) were increased during dengue virus infection and tenovin-1, a SIRT1/2 inhibitor, showed an impressive antiviral ability in vitro. In BHK-21 cells, tenovin-1 inhibited the replication of DENV2 with an EC50 at 3.41 ± 1.10 µM, also inhibited other three types of dengue viruses with EC50 at 0.97 ± 1.11 µM, 1.81 ± 1.08 µM, 3.81 ± 1.34 µM respectively. Moreover, the cytopathic effect-induced DENV2 was largely improved by tenovin-1 treatment and the release of progeny viruses was inhibited by tenovin-1 treatment. At the same time, the viral protein level and mRNA level were decreased with tenovin-1 treatment after dengue virus infection. From the drug-addition assay, the tenovin-1 played its antiviral after viral infection, which indicated tenovin-1 was not a microbicide. Apart from its antiviral effect, tenovin-1 inhibited the inflammatory response caused by DENV2, reducing the release of inflammatory factors during viral infection. The antiviral effect of tenovin-1 was abrogated with SIRT agonist or SIRT2 knockdown treatment, which indicated the effect of tenovin-1 was on-target. In conclusion, tenovin-1 was proved to be a promising compound against flavivirus infection through SIRT2, which should be pay more attention for further study.
Asunto(s)
Sirtuina 2 , Replicación Viral , Acetanilidas , Virus del Dengue , Tiourea/análogos & derivadosRESUMEN
SARS-CoV-2 caused the emerging epidemic of coronavirus disease in 2019 (COVID-19). To date, there are more than 82.9 million confirmed cases worldwide, there is no clinically effective drug against SARS-CoV-2 infection. The conserved properties of the membrane fusion domain of the spike (S) protein across SARS-CoV-2 make it a promising target to develop pan-CoV therapeutics. Herein, two clinically approved drugs, Itraconazole (ITZ) and Estradiol benzoate (EB), are found to inhibit viral entry by targeting the six-helix (6-HB) fusion core of SARS-CoV-2 S protein. Further studies shed light on the mechanism that ITZ and EB can interact with the heptad repeat 1 (HR1) region of the spike protein, to present anti-SARS-CoV-2 infections in vitro, indicating they are novel potential therapeutic remedies for COVID-19 treatment. Furthermore, ITZ shows broad-spectrum activity targeting 6-HB in the S2 subunit of SARS-CoV and MERS-CoV S protein, inspiring that ITZ have the potential for development as a pan-coronavirus fusion inhibitor.
RESUMEN
PARP1 and PARP2 dual inhibitors, such as olaparib, have been recently FDA approved for the treatment of advanced breast and ovarian cancers. However, their effects on bone mass and bone metastasis are unknown. Here we show that olaparib increases breast cancer bone metastasis through PARP2, but not PARP1, specifically in the myeloid lineage, but not in the cancer cells. Olaparib treatment or PARP1/2 deletion promotes osteoclast differentiation and bone loss. Intriguingly, myeloid deletion of PARP2, but not PARP1, increases the population of immature myeloid cells in bone marrow, and impairs the expression of chemokines such as CCL3 through enhancing the transcriptional repression by ß-catenin. Compromised CCL3 production in turn creates an immune-suppressive milieu by altering T cell subpopulations. Our findings warrant careful examination of current PARP inhibitors on bone metastasis and bone loss, and suggest cotreatment with CCL3, ß-catenin inhibitors, anti-RANKL or bisphosphonates as potential combination therapy for PARP inhibitors.
Asunto(s)
Neoplasias Óseas/secundario , Neoplasias de la Mama/patología , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Animales , Resorción Ósea/patología , Neoplasias de la Mama/tratamiento farmacológico , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Quimiocina CCL3/deficiencia , Quimiocina CCL3/genética , Quimiocina CCL3/metabolismo , Femenino , Eliminación de Gen , Humanos , Ratones Noqueados , Células Mieloides/efectos de los fármacos , Células Mieloides/metabolismo , Tamaño de los Órganos/efectos de los fármacos , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Osteoclastos/patología , Ftalazinas/farmacología , Ftalazinas/uso terapéutico , Piperazinas/farmacología , Piperazinas/uso terapéutico , Poli(ADP-Ribosa) Polimerasas/deficiencia , Regiones Promotoras Genéticas/genética , Linfocitos T Colaboradores-Inductores/efectos de los fármacos , Tibia/diagnóstico por imagen , Tibia/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , beta Catenina/metabolismoRESUMEN
A series of octahydroquinazoline-5-ones (OHQs 1-50) were designed and synthesized via an improved five-component reaction (5CR). Their bioactivities against dengue virus (DENV) were evaluated by determining lacate dehydrogenase (LDH) in the BHK-21 cells infected with DENV-2. Primary structure-activity relationship showed that six of OHQs with suitable substituents displayed good activities with EC50 = 1.31-1.85 µM. The primary bioactivity mechanism was investigated using the most potent OHQ 23. Experimental results indicate that 23 could efficiently reverse the DENV-2-induced cytopathic effect and suppress the expression of viral structure E protein, but showed no interaction with the MTase and RdRp domain of NS5, a protein plays an important role in viral genome transcription and viral protein translation. The efficient synthetic method, novel structures as DENV inhibitors and good activities are expected to be developed potential DENV inhibitors.
Asunto(s)
Virus del Dengue/efectos de los fármacos , Quinazolinonas/farmacología , Línea Celular , Dengue/tratamiento farmacológico , Humanos , Lactato Deshidrogenasas/análisis , Quinazolinonas/síntesis química , Quinazolinonas/química , Relación Estructura-Actividad , Proteínas no Estructurales Virales/efectos de los fármacos , Proteínas Estructurales Virales/antagonistas & inhibidores , Replicación ViralRESUMEN
Endoplasmic reticulum stress (ER stress) plays a main role in pancreatic [Formula: see text]-cell dysfunction and death because of intracellular Ca[Formula: see text] turbulence and inflammation activation. Although several drugs are targeting pancreatic [Formula: see text]-cell to improve [Formula: see text]-cell function, there still lacks agents to alleviate [Formula: see text]-cell ER stress conditions. Therefore we used thapsigargin (THAP) or high glucose (HG) to induce ER stress in [Formula: see text]-cell and aimed to screen natural molecules against ER stress-induced [Formula: see text]-cell dysfunction. Through screening the Traditional Chinese drug library ([Formula: see text] molecules), luteolin was finally discovered to improve [Formula: see text]-cell function. Cellular viability results indicated luteolin reduced the THAP or HG-induced [Formula: see text]-cell death and apoptosis through MTT and flow cytometry assay. Moreover, luteolin improved [Formula: see text]-cell insulin secretion ability under ER stress conditions. Also ER stress-induced intracellular Ca[Formula: see text] turbulence and inflammation activation were inhibited by luteolin treatment. Mechanically, luteolin inhibited HNF4[Formula: see text] signaling, which was induced by ER stress. Moreover, luteolin reduced the transcriptional level of HNF4[Formula: see text] downstream gene, such as Asnk4b and HNF1[Formula: see text]. Conversely HNF4[Formula: see text] knockdown abolished the effect of luteolin on [Formula: see text]-cell using siRNA. These results suggested the protective effect of luteolin on [Formula: see text]-cell was through HNF4[Formula: see text]/Asnk4b pathway. In conclusion, our study discovered that luteolin improved [Formula: see text]-cell function and disclosed the underlying mechanism of luteolin on [Formula: see text]-cell, suggesting luteolin is a promising agent against pancreatic dysfunction.