Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 231
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38926530

RESUMEN

The development of high-throughput RNA structure profiling methods in the past decade has greatly facilitated our ability to map and characterize different aspects of RNA structures transcriptome-wide in cell populations, single cells and single molecules. The resulting high-resolution data have provided insights into the static and dynamic nature of RNA structures, revealing their complexity as they perform their respective functions in the cell. In this Review, we discuss recent technical advances in the determination of RNA structures, and the roles of RNA structures in RNA biogenesis and functions, including in transcription, processing, translation, degradation, localization and RNA structure-dependent condensates. We also discuss the current understanding of how RNA structures could guide drug design for treating genetic diseases and battling pathogenic viruses, and highlight existing challenges and future directions in RNA structure research.

2.
Nat Rev Mol Cell Biol ; 24(6): 430-447, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36596869

RESUMEN

Genes specifying long non-coding RNAs (lncRNAs) occupy a large fraction of the genomes of complex organisms. The term 'lncRNAs' encompasses RNA polymerase I (Pol I), Pol II and Pol III transcribed RNAs, and RNAs from processed introns. The various functions of lncRNAs and their many isoforms and interleaved relationships with other genes make lncRNA classification and annotation difficult. Most lncRNAs evolve more rapidly than protein-coding sequences, are cell type specific and regulate many aspects of cell differentiation and development and other physiological processes. Many lncRNAs associate with chromatin-modifying complexes, are transcribed from enhancers and nucleate phase separation of nuclear condensates and domains, indicating an intimate link between lncRNA expression and the spatial control of gene expression during development. lncRNAs also have important roles in the cytoplasm and beyond, including in the regulation of translation, metabolism and signalling. lncRNAs often have a modular structure and are rich in repeats, which are increasingly being shown to be relevant to their function. In this Consensus Statement, we address the definition and nomenclature of lncRNAs and their conservation, expression, phenotypic visibility, structure and functions. We also discuss research challenges and provide recommendations to advance the understanding of the roles of lncRNAs in development, cell biology and disease.


Asunto(s)
ARN Largo no Codificante , ARN Largo no Codificante/genética , Núcleo Celular/genética , Cromatina/genética , Secuencias Reguladoras de Ácidos Nucleicos , ARN Polimerasa II/genética
3.
Mol Cell ; 82(2): 221-226, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-35063087

RESUMEN

With the focus on technology for this issue of Molecular Cell, a group of scientists working in different areas of molecular biology provide their perspective on the most recent important technological advance in their field, where the field is lacking, and their wish list for future technology development.


Asunto(s)
Investigación Biomédica/tendencias , Técnicas Genéticas/tendencias , Biología Molecular/tendencias , Animales , Difusión de Innovaciones , Humanos
4.
Mol Cell ; 81(23): 4942-4953.e8, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34655516

RESUMEN

The distribution, dynamics, and function of RNA structures in human development are under-explored. Here, we systematically assayed RNA structural dynamics and their relationship with gene expression, translation, and decay during human neurogenesis. We observed that the human ESC transcriptome is globally more structurally accessible than differentiated cells and undergoes extensive RNA structure changes, particularly in the 3' UTR. Additionally, RNA structure changes during differentiation are associated with translation and decay. We observed that RBP and miRNA binding is associated with RNA structural changes during early neuronal differentiation, and splicing is associated during later neuronal differentiation. Furthermore, our analysis suggests that RBPs are major factors in structure remodeling and co-regulate additional RBPs and miRNAs through structure. We demonstrated an example of this by showing that PUM2-induced structure changes on LIN28A enable miR-30 binding. This study deepens our understanding of the widespread and complex role of RNA-based gene regulation during human development.


Asunto(s)
Redes Reguladoras de Genes , Estudio de Asociación del Genoma Completo , Neurogénesis , Neuronas/metabolismo , Transcripción Genética , Regiones no Traducidas 3' , Diferenciación Celular , Análisis por Conglomerados , Técnicas Genéticas , Células HEK293 , Humanos , MicroARNs/metabolismo , Modelos Estadísticos , Neuronas/fisiología , Conformación de Ácido Nucleico , ARN/análisis , Empalme del ARN , Proteínas de Unión al ARN/metabolismo , Especificidad por Sustrato , Biología de Sistemas , Transcriptoma
5.
Nat Methods ; 21(3): 411-422, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38177506

RESUMEN

RNA structure is critical for multiple steps in gene regulation. However, how the structures of transcripts differ both within and between individual cells is unknown. Here we develop a SHAPE-inspired method called single-cell structure probing of RNA transcripts that enables simultaneous determination of transcript secondary structure and abundance at single-cell resolution. We apply single-cell structure probing of RNA transcripts to human embryonic stem cells and differentiating neurons. Remarkably, RNA structure is more homogeneous in human embryonic stem cells compared with neurons, with the greatest homogeneity found in coding regions. More extensive heterogeneity is found within 3' untranslated regions and is determined by specific RNA-binding proteins. Overall RNA structure profiles better discriminate cell type identity and differentiation stage than gene expression profiles alone. We further discover a cell-type variable region of 18S ribosomal RNA that is associated with cell cycle and translation control. Our method opens the door to the systematic characterization of RNA structure-function relationships at single-cell resolution.


Asunto(s)
ARN , Humanos , ARN/genética , ARN/química , ARN Mensajero/genética , Secuencia de Bases , Conformación de Ácido Nucleico , Diferenciación Celular
6.
N Engl J Med ; 388(22): 2025-2036, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37256974

RESUMEN

BACKGROUND: The effects of the glycoprotein IIb/IIIa receptor inhibitor tirofiban in patients with acute ischemic stroke but who have no evidence of complete occlusion of large or medium-sized vessels have not been extensively studied. METHODS: In a multicenter trial in China, we enrolled patients with ischemic stroke without occlusion of large or medium-sized vessels and with a National Institutes of Health Stroke Scale score of 5 or more and at least one moderately to severely weak limb. Eligible patients had any of four clinical presentations: ineligible for thrombolysis or thrombectomy and within 24 hours after the patient was last known to be well; progression of stroke symptoms 24 to 96 hours after onset; early neurologic deterioration after thrombolysis; or thrombolysis with no improvement at 4 to 24 hours. Patients were assigned to receive intravenous tirofiban (plus oral placebo) or oral aspirin (100 mg per day, plus intravenous placebo) for 2 days; all patients then received oral aspirin until day 90. The primary efficacy end point was an excellent outcome, defined as a score of 0 or 1 on the modified Rankin scale (range, 0 [no symptoms] to 6 [death]) at 90 days. Secondary end points included functional independence at 90 days and a quality-of-life score. The primary safety end points were death and symptomatic intracranial hemorrhage. RESULTS: A total of 606 patients were assigned to the tirofiban group and 571 to the aspirin group. Most patients had small infarctions that were presumed to be atherosclerotic. The percentage of patients with a score of 0 or 1 on the modified Rankin scale at 90 days was 29.1% with tirofiban and 22.2% with aspirin (adjusted risk ratio, 1.26; 95% confidence interval, 1.04 to 1.53, P = 0.02). Results for secondary end points were generally not consistent with the results of the primary analysis. Mortality was similar in the two groups. The incidence of symptomatic intracranial hemorrhage was 1.0% in the tirofiban group and 0% in the aspirin group. CONCLUSIONS: In this trial involving heterogeneous groups of patients with stroke of recent onset or progression of stroke symptoms and nonoccluded large and medium-sized cerebral vessels, intravenous tirofiban was associated with a greater likelihood of an excellent outcome than low-dose aspirin. Incidences of intracranial hemorrhages were low but slightly higher with tirofiban. (Funded by the National Natural Science Foundation of China; RESCUE BT2 Chinese Clinical Trial Registry number, ChiCTR2000029502.).


Asunto(s)
Fibrinolíticos , Accidente Cerebrovascular Isquémico , Tirofibán , Humanos , Aspirina/efectos adversos , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/etiología , Fibrinolíticos/efectos adversos , Fibrinolíticos/uso terapéutico , Hemorragias Intracraneales/inducido químicamente , Accidente Cerebrovascular Isquémico/diagnóstico , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/etiología , Inhibidores de Agregación Plaquetaria/efectos adversos , Inhibidores de Agregación Plaquetaria/uso terapéutico , Tirofibán/efectos adversos , Tirofibán/uso terapéutico , Resultado del Tratamiento , Enfermedades Arteriales Cerebrales/tratamiento farmacológico , Enfermedades Arteriales Cerebrales/etiología
7.
Development ; 150(23)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38032088

RESUMEN

Heart development is a complex process that requires asymmetric positioning of the heart, cardiac growth and valve morphogenesis. The mechanisms controlling heart morphogenesis and valve formation are not fully understood. The pro-convertase FurinA functions in heart development across vertebrates. How FurinA activity is regulated during heart development is unknown. Through computational analysis of the zebrafish transcriptome, we identified an RNA motif in a variant FurinA transcript harbouring a long 3' untranslated region (3'UTR). The alternative 3'UTR furina isoform is expressed prior to organ positioning. Somatic deletions in the furina 3'UTR lead to embryonic left-right patterning defects. Reporter localisation and RNA-binding assays show that the furina 3'UTR forms complexes with the conserved RNA-binding translational repressor, Ybx1. Conditional ybx1 mutant embryos show premature and increased Furin reporter expression, abnormal cardiac morphogenesis and looping defects. Mutant ybx1 hearts have an expanded atrioventricular canal, abnormal sino-atrial valves and retrograde blood flow from the ventricle to the atrium. This is similar to observations in humans with heart valve regurgitation. Thus, the furina 3'UTR element/Ybx1 regulon is important for translational repression of FurinA and regulation of heart development.


Asunto(s)
Regulón , Pez Cebra , Animales , Humanos , Regiones no Traducidas 3' , Regulón/genética , Morfogénesis/genética , Válvulas Cardíacas , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Proproteína Convertasas/genética , Proproteína Convertasas/metabolismo
8.
Plant Cell ; 35(4): 1241-1258, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36648110

RESUMEN

In Arabidopsis thaliana, female gametophyte (FG) development is accompanied by the formation and expansion of the large vacuole in the FG; this is essential for FG expansion, nuclear polar localization, and cell fate determination. Arabidopsis VACUOLELESS GAMETOPHYTES (VLG) facilitates vesicular fusion to form large vacuole in the FG, but the regulation of VLG remains largely unknown. Here, we found that gain-of-function mutation of BRASSINOSTEROID INSENSITIVE2 (BIN2) (bin2-1) increases VLG abundance to induce the vacuole formation at stage FG1, and leads to abortion of FG. Loss-of-function mutation of BIN2 and its homologs (bin2-3 bil1 bil2) reduced VLG abundance and mimicked vlg/VLG phenotypes. Knocking down VLG in bin2-1 decreased the ratio of aberrant vacuole formation at stage FG1, whereas FG1-specific overexpression of VLG mimicked the bin2-1 phenotype. VLG partially rescued the bin2-3 bil1 bil2 phenotype, demonstrating that VLG acts downstream of BIN2. Mutation of VLG residues that are phosphorylated by BIN2 altered VLG stability and a phosphorylation mimic of VLG causes similar defects as did bin2-1. Therefore, BIN2 may function by interacting with and phosphorylating VLG in the FG to enhance its stability and abundance, thus facilitating vacuole formation. Our findings provide mechanistic insight into how the BIN2-VLG module regulates the spatiotemporal formation of the large vacuole in FG development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Células Germinativas de las Plantas/metabolismo , Óvulo Vegetal/genética , Óvulo Vegetal/metabolismo , Fosforilación , Proteínas Quinasas/metabolismo , Transducción de Señal/genética , Vacuolas/metabolismo
9.
J Cell Sci ; 136(12)2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37259855

RESUMEN

The mammalian epidermis undergoes constant renewal, replenished by a pool of stem cells and terminal differentiation of their progeny. This is accompanied by changes in gene expression and morphology that are orchestrated, in part, by epigenetic modifiers. Here, we define the role of the histone acetyltransferase KAT2A in epidermal homeostasis and provide a comparative analysis that reveals key functional divergence with its paralog KAT2B. In contrast to the reported function of KAT2B in epidermal differentiation, KAT2A supports the undifferentiated state in keratinocytes. RNA-seq analysis of KAT2A- and KAT2B- depleted keratinocytes revealed dysregulated epidermal differentiation. Depletion of KAT2A led to premature expression of epidermal differentiation genes in the absence of inductive signals, whereas loss of KAT2B delayed differentiation. KAT2A acetyltransferase activity was indispensable in regulating epidermal differentiation gene expression. The metazoan-specific N terminus of KAT2A was also required to support its function in keratinocytes. We further showed that the interplay between KAT2A- and KAT2B-mediated regulation was important for normal cutaneous wound healing in vivo. Overall, these findings reveal a distinct mechanism in which keratinocytes use a pair of highly homologous histone acetyltransferases to support divergent functions in self-renewal and differentiation processes.


Asunto(s)
Histona Acetiltransferasas , Queratinocitos , Animales , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Queratinocitos/metabolismo , Diferenciación Celular/genética , Piel/metabolismo , Epidermis/metabolismo , Mamíferos/metabolismo
10.
Nat Methods ; 19(7): 833-844, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35697834

RESUMEN

Inosine is a prevalent RNA modification in animals and is formed when an adenosine is deaminated by the ADAR family of enzymes. Traditionally, inosines are identified indirectly as variants from Illumina RNA-sequencing data because they are interpreted as guanosines by cellular machineries. However, this indirect method performs poorly in protein-coding regions where exons are typically short, in non-model organisms with sparsely annotated single-nucleotide polymorphisms, or in disease contexts where unknown DNA mutations are pervasive. Here, we show that Oxford Nanopore direct RNA sequencing can be used to identify inosine-containing sites in native transcriptomes with high accuracy. We trained convolutional neural network models to distinguish inosine from adenosine and guanosine, and to estimate the modification rate at each editing site. Furthermore, we demonstrated their utility on the transcriptomes of human, mouse and Xenopus. Our approach expands the toolkit for studying adenosine-to-inosine editing and can be further extended to investigate other RNA modifications.


Asunto(s)
Nanoporos , ARN , Adenosina/genética , Animales , Inosina/genética , Ratones , ARN/genética , ARN/metabolismo , Edición de ARN , Análisis de Secuencia de ARN
11.
PLoS Pathog ; 19(10): e1011753, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37883598

RESUMEN

Virus genome recoding is an attenuation method that confers genetically stable attenuation by rewriting a virus genome with numerous silent mutations. Prior flavivirus genome recoding attempts utilised codon deoptimisation approaches. However, these codon deoptimisation approaches act in a species dependent manner and were unable to confer flavivirus attenuation in mosquito cells or in mosquito animal models. To overcome these limitations, we performed flavivirus genome recoding using the contrary approach of codon optimisation. The genomes of flaviviruses such as dengue virus type 2 (DENV2) and Zika virus (ZIKV) contain functional RNA elements that regulate viral replication. We hypothesised that flavivirus genome recoding by codon optimisation would introduce silent mutations that disrupt these RNA elements, leading to decreased replication efficiency and attenuation. We chose DENV2 and ZIKV as representative flaviviruses and recoded them by codon optimising their genomes for human expression. Our study confirms that this recoding approach of codon optimisation does translate into reduced replication efficiency in mammalian, human, and mosquito cells as well as in vivo attenuation in both mice and mosquitoes. In silico modelling and RNA SHAPE analysis confirmed that DENV2 recoding resulted in the extensive disruption of genomic structural elements. Serial passaging of recoded DENV2 resulted in the emergence of rescue or adaptation mutations, but no reversion mutations. These rescue mutations were unable to rescue the delayed replication kinetics and in vivo attenuation of recoded DENV2, demonstrating that recoding confers genetically stable attenuation. Therefore, our recoding approach is a reliable attenuation method with potential applications for developing flavivirus vaccines.


Asunto(s)
Culicidae , Flavivirus , Infección por el Virus Zika , Virus Zika , Humanos , Animales , Ratones , Flavivirus/genética , Virus Zika/genética , Replicación Viral/genética , Codón , Mamíferos
12.
Small ; 20(6): e2306195, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37789582

RESUMEN

The poor reversibility and stability of Zn metal anode (ZMA) caused by uncontrolled Zn deposition behaviors and serious side reactions severely impeded the practical application of aqueous Zn metal battery. Herein, a liquid-dynamic and self-adaptive protective layer (LSPL) was constructed on the ZMA surface for inhibiting dendrites and by-products formation. Interestingly, the outer LSPL consists of liquid perfluoropolyether (PFPE), which can dynamically adapt volume change during repeat cycling and inhibit side reactions. Moreover, it can also decrease the de-solvation energy barrier of Zn2+ by strong interaction between C-F bond and foreign Zn2+ , improving Zn2+ transport kinetics. For the LSPL inner region, in-situ formed ZnF2 through the spontaneous chemical reaction between metallic Zn and part PFPE can establish an unimpeded Zn2+ migration pathway for accelerating ion transfer, thereby restricting Zn dendrites formation. Consequently, the LSPL-modified ZMA enables reversible Zn deposition/dissolution up to 2000 h at 1 mA cm-2 and high coulombic efficiency of 99.8% at 4 mA cm-2 . Meanwhile, LSPL@Zn||NH4 V4 O10 full cells deliver an ultralong cycling lifespan of 100 00 cycles with 0.0056% per cycle decay rate at 10 A g-1 . This self-adaptive layer provides a new strategy to improve the interface stability for next-generation aqueous Zn battery.

13.
Virol J ; 21(1): 123, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822405

RESUMEN

BACKGROUND: Long coronavirus disease (COVID) after COVID-19 infection is continuously threatening the health of people all over the world. Early prediction of the risk of Long COVID in hospitalized patients will help clinical management of COVID-19, but there is still no reliable and effective prediction model. METHODS: A total of 1905 hospitalized patients with COVID-19 infection were included in this study, and their Long COVID status was followed up 4-8 weeks after discharge. Univariable and multivariable logistic regression analysis were used to determine the risk factors for Long COVID. Patients were randomly divided into a training cohort (70%) and a validation cohort (30%), and factors for constructing the model were screened using Lasso regression in the training cohort. Visualize the Long COVID risk prediction model using nomogram. Evaluate the performance of the model in the training and validation cohort using the area under the curve (AUC), calibration curve, and decision curve analysis (DCA). RESULTS: A total of 657 patients (34.5%) reported that they had symptoms of long COVID. The most common symptoms were fatigue or muscle weakness (16.8%), followed by sleep difficulties (11.1%) and cough (9.5%). The risk prediction nomogram of age, diabetes, chronic kidney disease, vaccination status, procalcitonin, leukocytes, lymphocytes, interleukin-6 and D-dimer were included for early identification of high-risk patients with Long COVID. AUCs of the model in the training cohort and validation cohort are 0.762 and 0.713, respectively, demonstrating relatively high discrimination of the model. The calibration curve further substantiated the proximity of the nomogram's predicted outcomes to the ideal curve, the consistency between the predicted outcomes and the actual outcomes, and the potential benefits for all patients as indicated by DCA. This observation was further validated in the validation cohort. CONCLUSIONS: We established a nomogram model to predict the long COVID risk of hospitalized patients with COVID-19, and proved its relatively good predictive performance. This model is helpful for the clinical management of long COVID.


Asunto(s)
COVID-19 , Nomogramas , SARS-CoV-2 , Humanos , COVID-19/epidemiología , COVID-19/complicaciones , COVID-19/diagnóstico , Masculino , Femenino , Persona de Mediana Edad , Pronóstico , Factores de Riesgo , Estudios de Cohortes , Anciano , Adulto , Hospitalización/estadística & datos numéricos , Medición de Riesgo , Síndrome Post Agudo de COVID-19
14.
Mol Cell ; 62(4): 603-17, 2016 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-27184079

RESUMEN

Identifying pairwise RNA-RNA interactions is key to understanding how RNAs fold and interact with other RNAs inside the cell. We present a high-throughput approach, sequencing of psoralen crosslinked, ligated, and selected hybrids (SPLASH), that maps pairwise RNA interactions in vivo with high sensitivity and specificity, genome-wide. Applying SPLASH to human and yeast transcriptomes revealed the diversity and dynamics of thousands of long-range intra- and intermolecular RNA-RNA interactions. Our analysis highlighted key structural features of RNA classes, including the modular organization of mRNAs, its impact on translation and decay, and the enrichment of long-range interactions in noncoding RNAs. Additionally, intermolecular mRNA interactions were organized into network clusters and were remodeled during cellular differentiation. We also identified hundreds of known and new snoRNA-rRNA binding sites, expanding our knowledge of rRNA biogenesis. These results highlight the underexplored complexity of RNA interactomes and pave the way to better understanding how RNA organization impacts biology.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN de Hongos/genética , ARN Mensajero/genética , ARN Neoplásico/genética , ARN Ribosómico/genética , ARN Nucleolar Pequeño/genética , Saccharomyces cerevisiae/genética , Transcriptoma , Sitios de Unión , Diferenciación Celular , Biología Computacional , Reactivos de Enlaces Cruzados/química , Bases de Datos Genéticas , Células Madre Embrionarias/metabolismo , Ficusina/química , Regulación Fúngica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Estudio de Asociación del Genoma Completo , Células HeLa , Humanos , Conformación de Ácido Nucleico , Estabilidad del ARN , ARN de Hongos/química , ARN de Hongos/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , ARN Neoplásico/química , ARN Neoplásico/metabolismo , ARN Ribosómico/química , ARN Ribosómico/metabolismo , ARN Nucleolar Pequeño/química , ARN Nucleolar Pequeño/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo
15.
Glia ; 71(5): 1233-1246, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36598105

RESUMEN

Optic nerve head (ONH) astrocytes provide structural and metabolic support to neuronal axons in developmental, physiological, and pathological progression. Mechanosensitive properties of astrocytes allow them to sense and respond to mechanical cues from the local environment. We confirmed that ONH astrocytes express the mechanosensitive ion channel Piezo1 in vivo. By manipulating Piezo1 knockdown or overexpression in vitro, we found that Piezo1 is necessary but insufficient for ONH astrocyte proliferation. Loss of Piezo1 can lead to cell cycle arrest at G0/G1 phase, a possible mechanism involving decreased yes-associated protein (YAP) nuclear localization and downregulation of YAP-target cell cycle-associated factors, including cyclin D1 and c-Myc. Gene ontology enrichment analysis of differential expression genes from RNA-seq data indicates that the absence of Piezo1 affects biological processes involving cell division. Our results demonstrate that Piezo1 is an essential regulator in cell cycle progression in ONH astrocytes.


Asunto(s)
Disco Óptico , Disco Óptico/metabolismo , Disco Óptico/patología , Astrocitos/metabolismo , División Celular , Canales Iónicos/genética , Canales Iónicos/metabolismo , Ciclo Celular/genética
16.
Annu Rev Genomics Hum Genet ; 21: 81-100, 2020 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-32320281

RESUMEN

RNA proximity ligation is a set of molecular biology techniques used to analyze the conformations and spatial proximity of RNA molecules within cells. A typical experiment starts with cross-linking of a biological sample using UV light or psoralen, followed by partial fragmentation of RNA, RNA-RNA ligation, library preparation, and high-throughput sequencing. In the past decade, proximity ligation has been used to study structures of individual RNAs, networks of interactions between small RNAs and their targets, and whole RNA-RNA interactomes, in models ranging from bacteria to animal tissues and whole animals. Here, we provide an overview of the field, highlight the main findings, review the recent experimental and computational developments, and provide troubleshooting advice for new users. In the final section, we draw parallels between DNA and RNA proximity ligation and speculate on possible future research directions.


Asunto(s)
Biología Computacional/métodos , Conformación de Ácido Nucleico , ARN/química , ARN/genética , Animales , Humanos
17.
Small ; 19(47): e2304751, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37485645

RESUMEN

The dendrite growth and parasitic reactions that occur on Zn metal anode (ZMA)/electrolyte interface hinder the development of aqueous zinc ion batteries (AZIBs) in next-generation renewable energy storage systems. Fortunately, reconstructing the inner Helmholtz layer (IHL) by introducing an electrolyte additive, is viewed as one of the most promising strategies to harvest the stable ZMA. Herein, (4-chloro-3-nitrophenyl) (pyridin-4-yl) methanone (CNPM) with quadruple functional groups is introduced into the ZnSO4 electrolyte to reshape the interface between ZMA and electrolyte and change the solvation structure of Zn2+ . Density functional theory (DFT) calculations manifest that the ─C═O, ─Cl, ─C═N─, and ─NO2 functional groups of CNPM interact with metallic Zn simultaneously and adsorb on the ZMA surface in a parallel arrangement manner, thus forming a water-poor IHL and creating well-arranged ion transportation channels. Furthermore, theoretical calculations and experimental results demonstrate that CNPM absorbed on the Zn anode surface can serve as zincophilic sites for inducing uniform Zn deposition along the (002) plane. Benefiting from the synergistic effect of these functions, the dendrite growth and parasitic reactions are suppressed significantly. As a result, ZMA exhibits a long cycle life (2900 h) and high coulombic efficiency (CE) (500 cycles) in the ZnSO4 +CNPM electrolyte.

18.
Crit Rev Food Sci Nutr ; : 1-20, 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37114919

RESUMEN

Nervonic acid, a 24-carbon fatty acid with only one double bond at the 9th carbon (C24:1n-9), is abundant in the human brain, liver, and kidney. It not only functions in free form but also serves as a critical component of sphingolipids which participate in many biological processes such as cell membrane formation, apoptosis, and neurotransmission. Recent studies show that nervonic acid supplementation is not only beneficial to human health but also can improve the many medical conditions such as neurological diseases, cancers, diabetes, obesity, and their complications. Nervonic acid and its sphingomyelins serve as a special material for myelination in infants and remyelination patients with multiple sclerosis. Besides, the administration of nervonic acid is reported to reduce motor disorder in mice with Parkinson's disease and limit weight gain. Perturbations of nervonic acid and its sphingolipids might lead to the pathogenesis of many diseases and understanding these mechanisms is critical for investigating potential therapeutic approaches for such diseases. However, available studies about this aspect are limited. In this review, relevant findings about functional mechanisms of nervonic acid have been comprehensively and systematically described, focusing on four interconnected functions: cellular structure, signaling, anti-inflammation, lipid mobilization, and their related diseases.

19.
Nanotechnology ; 34(49)2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37673043

RESUMEN

Exploring highly active oxygen reduction electrocatalysts with low precious metals content is imperative but remains a considerable challenge. Herein, a series of heterobimetallic multi-walled carbon nanotubes (MWCNTs) electrocatalysts based on metal complexes are presented. These electrocatalysts feature diverse transition metals (M=Mn, Fe, Co, Ni) 5,15-bromophenyl-10, 20-methoxyphenyl porphyrin (MBMP) and tetrakis(triphenylphosphine)palladium (0) (Pd[P(Ph3)4]) anchored non-covalently on its surface. The resulting NiBMP-based MWCNTs with Pd[P(Ph3)4] (PdNiN4/MWCNTs) display outstanding electrocatalytic oxygen reduction activity (onset potential, 0.941 V; half wave potential, 0.830 V) and robust long-term durability in alkaline electrolyte. While in neutral condition, the MnBMP-based MWCNTs with Pd[P(Ph3)4] (PdMnN4/MWCNTs) are the most active heterobimetallic ORR catalyst and produce ultra-low concentration hydrogen peroxide (H2O2yield, 1.2%-1.3%). Synergistically tuning the ORR electrocatalytic activity and electron transfer pathway is achieved by the formation of NiBMP/MnBMP-Pd[P(Ph3)4] active sites. This work indicates such metalloporphyrin-Pd[P(Ph3)4] active sites on MWCNTs have significantly positive influence on electrocatalytic ORR systems and provides facile and mild strategy for designing highly efficient ORR electrocatalysts with ultra-low loading precious metal.

20.
Pestic Biochem Physiol ; 194: 105522, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37532306

RESUMEN

Insects are frequently exposed to a range of insecticides that can alter the structure of the commensal microbiome. However, the effects of exposure to non-target pesticides (including non-target insecticides and fungicides) on insect pest microbiomes are still unclear. In the present study, we exposed Nilaparvata lugens to three target insecticides (nitenpyram, pymetrozine, and avermectin), a non-target insecticide (chlorantraniliprole), and two fungicides (propiconazole and tebuconazole), and observed changes in the microbiome's structure and function. Our results showed that both non-target insecticide and fungicides can disrupt the microbiome's structure. Specifically, symbiotic bacteria of N. lugens were more sensitive to non-target insecticide compared to target insecticide, while the symbiotic fungi were more sensitive to fungicides. We also found that the microbiome in the field strain was more stable under pesticides exposure than the laboratory strain (a susceptible strain), and core microbial species g_Pseudomonas, s_Acinetobacter soli, g_Lactobacillus, s_Metarhizium minus, and s_Penicillium citrinum were significantly affected by specifically pesticides. Furthermore, the functions of symbiotic bacteria in nutrient synthesis were predicted to be significantly reduced by non-target insecticide. Our findings contribute to a better understanding of the impact of non-target pesticides on insect microbial communities and highlight the need for scientific and rational use of pesticides.


Asunto(s)
Fungicidas Industriales , Hemípteros , Insecticidas , Microbiota , Plaguicidas , Animales , Insecticidas/toxicidad , Plaguicidas/farmacología , Fungicidas Industriales/farmacología , Bacterias , Resistencia a los Insecticidas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA