Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Oecologia ; 201(3): 863-875, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36914820

RESUMEN

Large-scale deforestation in the tropics, triggered by logging and subsequent agricultural monoculture has a significant adverse impact on biodiversity due to habitat degradation. Here, we measured the diversity of butterfly species in three agricultural landscapes, agroforestry orchards, oil palm, and rubber tree plantations. Butterfly species were counted at 127 sampling points over the course of a year using the point count method. We found that agroforestry orchards supported a greater number of butterfly species (74 species) compared to rubber tree (61 species) and oil palm plantations (54 species) which were dominated by generalist (73%) followed by forest specialists (27%). We found no significant difference of butterfly species composition between agroforestry orchards and rubber tree plantation, with both habitats associated with more butterfly species compared to oil palm plantations. This indicates butterflies were able to persist better in certain agricultural landscapes. GLMMs suggested that tree height, undergrowth coverage and height, and elevation determined butterfly diversity. Butterfly species richness was also influenced by season and landscape-level variables such as proximity to forest, mean NDVI, and habitat. Understanding the factors that contributed to butterfly species richness in an agroecosystem, stakeholders should consider management practices to improve biodiversity conservation such as ground vegetation management and retaining adjacent forest areas to enhance butterfly species richness. Furthermore, our findings suggest that agroforestry system should be considered to enhance biodiversity in agricultural landscapes.


Asunto(s)
Mariposas Diurnas , Animales , Ecosistema , Biodiversidad , Bosques , Agricultura , Conservación de los Recursos Naturales
2.
Ecol Evol ; 10(2): 654-661, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32015833

RESUMEN

In human-modified landscapes, important ecological functions such as predation are negatively affected by anthropogenic activities, including the use of pesticides and habitat degradation. Predation of insect pests is an indicator of healthy ecosystem functioning, which provides important ecosystem services, especially for agricultural systems. In this study, we compare predation attempts from arthropods, mammals, and birds on artificial caterpillars in the understory, between three tropical agricultural land-use types: oil palm plantations, rubber tree plantations, and fruit orchards. We collected a range of local and landscape-scale data including undergrowth vegetation structure; elevation; proximity to forest; and canopy cover in order to understand how environmental variables can affect predation. In all three land-use types, our results showed that arthropods and mammals were important predators of artificial caterpillars and there was little predation by birds. We did not find any effect of the environmental variables on predation. There was an interactive effect between land-use type and predator type. Predation by mammals was considerably higher in fruit orchards and rubber tree than in oil palm plantations, likely due to their ability to support higher abundances of insectivorous mammals. In order to maintain or enhance natural pest control in these common tropical agricultural land-use types, management practices that benefit insectivorous animals should be introduced, such as the reduction of pesticides, improvement of understory vegetation, and local and landscape heterogeneity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA