Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(26): 15182-15192, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32554494

RESUMEN

The anthracycline doxorubicin (Doxo) and its analogs daunorubicin (Daun), epirubicin (Epi), and idarubicin (Ida) have been cornerstones of anticancer therapy for nearly five decades. However, their clinical application is limited by severe side effects, especially dose-dependent irreversible cardiotoxicity. Other detrimental side effects of anthracyclines include therapy-related malignancies and infertility. It is unclear whether these side effects are coupled to the chemotherapeutic efficacy. Doxo, Daun, Epi, and Ida execute two cellular activities: DNA damage, causing double-strand breaks (DSBs) following poisoning of topoisomerase II (Topo II), and chromatin damage, mediated through histone eviction at selected sites in the genome. Here we report that anthracycline-induced cardiotoxicity requires the combination of both cellular activities. Topo II poisons with either one of the activities fail to induce cardiotoxicity in mice and human cardiac microtissues, as observed for aclarubicin (Acla) and etoposide (Etop). Further, we show that Doxo can be detoxified by chemically separating these two activities. Anthracycline variants that induce chromatin damage without causing DSBs maintain similar anticancer potency in cell lines, mice, and human acute myeloid leukemia patients, implying that chromatin damage constitutes a major cytotoxic mechanism of anthracyclines. With these anthracyclines abstained from cardiotoxicity and therapy-related tumors, we thus uncoupled the side effects from anticancer efficacy. These results suggest that anthracycline variants acting primarily via chromatin damage may allow prolonged treatment of cancer patients and will improve the quality of life of cancer survivors.


Asunto(s)
Antineoplásicos/efectos adversos , Cromatina/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Doxorrubicina/efectos adversos , Animales , Línea Celular , Doxorrubicina/análogos & derivados , Doxorrubicina/síntesis química , Doxorrubicina/metabolismo , Doxorrubicina/uso terapéutico , Cardiopatías/inducido químicamente , Histonas , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Ratones
2.
J Org Chem ; 86(8): 5757-5770, 2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33783212

RESUMEN

Anthracyclines are effective drugs in the treatment of various cancers, but their use comes with severe side effects. The archetypal anthracycline drug, doxorubicin, displays two molecular modes of action: DNA double-strand break formation (through topoisomerase IIα poisoning) and chromatin damage (via eviction of histones). These biological activities can be modulated and toxic side effects can be reduced by separating these two modes of action through alteration of the aminoglycoside moiety of doxorubicin. We herein report on the design, synthesis, and evaluation of a coherent set of configurational doxorubicin analogues featuring all possible stereoisomers of the 1,2-amino-alcohol characteristic for the doxorubicin 3-amino-2,3-dideoxyfucoside, each in nonsubstituted and N,N-dimethylated forms. The set of doxorubicin analogues was synthesized using appropriately protected 2,3,6-dideoxy-3-amino glycosyl donors, equipped with an alkynylbenzoate anomeric leaving group, and the doxorubicin aglycon acceptor. The majority of these glycosylations proceeded in a highly stereoselective manner to provide the desired axial α-linkage. We show that both stereochemistry of the 3-amine carbon and N-substitution state are critical for anthracycline cytotoxicity and generally improve cellular uptake. N,N-Dimethylepirubicin is identified as the most potent anthracycline that does not induce DNA damage while remaining cytotoxic.


Asunto(s)
Antraciclinas , Antineoplásicos , Antibióticos Antineoplásicos , ADN-Topoisomerasas de Tipo II , Doxorrubicina
3.
J Am Chem Soc ; 142(16): 7250-7253, 2020 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-32275401

RESUMEN

Proteasome inhibitors are established therapeutic agents for the treatment of hematological cancers, as are anthracyclines such as doxorubicin. We here present a new drug targeting approach that combines both drug classes into a single molecule. Doxorubicin was conjugated to an immunoproteasome-selective inhibitor via light-cleavable linkers, yielding peptide epoxyketone-doxorubicin prodrugs that remained selective and active toward immunoproteasomes. Upon cellular uptake and immunoproteasome inhibition, doxorubicin is released from the immunoproteasome inhibitor through photoirradiation. Multiple myeloma cells in this way take a double hit: immunoproteasome inhibition and doxorubicin-induced toxicity. Our strategy, which entails targeting of a cytotoxic agent, through a covalent enzyme inhibitor that is detrimental to tumor tissue in its own right, may find use in the search for improved anticancer drugs.


Asunto(s)
Antibióticos Antineoplásicos/uso terapéutico , Doxorrubicina/uso terapéutico , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/radioterapia , Óptica y Fotónica/métodos , Inhibidores de Proteasoma/uso terapéutico , Antibióticos Antineoplásicos/farmacología , Doxorrubicina/farmacología , Humanos , Modelos Moleculares , Inhibidores de Proteasoma/farmacología
4.
J Am Chem Soc ; 139(19): 6534-6537, 2017 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-28463498

RESUMEN

The conformational analysis of glycosidases affords a route to their specific inhibition through transition-state mimicry. Inspired by the rapid reaction rates of cyclophellitol and cyclophellitol aziridine-both covalent retaining ß-glucosidase inhibitors-we postulated that the corresponding carba "cyclopropyl" analogue would be a potent retaining ß-glucosidase inhibitor for those enzymes reacting through the 4H3 transition-state conformation. Ab initio metadynamics simulations of the conformational free energy landscape for the cyclopropyl inhibitors show a strong bias for the 4H3 conformation, and carba-cyclophellitol, with an N-(4-azidobutyl)carboxamide moiety, proved to be a potent inhibitor (Ki = 8.2 nM) of the Thermotoga maritima TmGH1 ß-glucosidase. 3-D structural analysis and comparison with unreacted epoxides show that this compound indeed binds in the 4H3 conformation, suggesting that conformational strain induced through a cyclopropyl unit may add to the armory of tight-binding inhibitor designs.


Asunto(s)
Ciclohexanoles/farmacología , Inhibidores de Glicósido Hidrolasas/farmacología , alfa-Glucosidasas/metabolismo , Ciclohexanoles/química , Inhibidores de Glicósido Hidrolasas/química , Modelos Moleculares , Estructura Molecular , Teoría Cuántica , Thermotoga maritima/enzimología
5.
J Med Chem ; 67(16): 13802-13812, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39088428

RESUMEN

Anthracyclines comprise one of the most effective anticancer drug classes. Doxorubicin, daunorubicin, epirubicin, and idarubicin have been in clinical use for decades, but their application remains complicated by treatment-related toxicities and drug resistance. We previously demonstrated that the combination of DNA damage and histone eviction exerted by doxorubicin drives its associated adverse effects. However, whether the same properties dictate drug resistance is unclear. In the present study, we evaluate a library of 40 anthracyclines on their cytotoxicity, intracellular uptake, and subcellular localization in K562 wildtype versus ABCB1-transporter-overexpressing, doxorubicin-resistant cells. We identify several highly potent cytotoxic anthracyclines. Among these, N,N-dimethyl-idarubicin and anthracycline (composed of the idarubicin aglycon and the aclarubicin trisaccharide) stand out, due to their histone eviction-mediated cytotoxicity toward doxorubicin-resistant cells. Our findings thus uncover understudied anthracycline variants warranting further investigation in the quest for safer and more effective anticancer agents that circumvent cellular export by ABCB1.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP , Doxorrubicina , Resistencia a Antineoplásicos , Idarrubicina , Humanos , Resistencia a Antineoplásicos/efectos de los fármacos , Doxorrubicina/farmacología , Doxorrubicina/química , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Idarrubicina/farmacología , Idarrubicina/química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Células K562 , Relación Estructura-Actividad
6.
Front Bioeng Biotechnol ; 12: 1363803, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38481571

RESUMEN

Introduction: Daunorubicin and doxorubicin, two anthracycline polyketides produced by S. peucetius, are potent anticancer agents that are widely used in chemotherapy, despite severe side effects. Recent advances have highlighted the potential of producing improved derivatives with reduced side effects by incorporating l-rhodosamine, the N,N-dimethyl analogue of the native amino sugar moiety. Method: In this study, we aimed to produce N,N-dimethylated anthracyclines by engineering the doxorubicin biosynthetic pathway in the industrial Streptomyces peucetius strain G001. To achieve this, we introduced genes from the aclarubicin biosynthetic pathway encoding the sugar N-methyltransferases AclP and AknX2. Furthermore, the native gene for glycosyltransferase DnrS was replaced with genes encoding the aclarubicin glycosyltransferases AknS and AknT. Additionally, the gene for methylesterase RdmC from the rhodomycin biosynthetic pathway was introduced. Results: A new host was engineered successfully, whereby genes from the aclarubicin pathway were introduced and expressed. LC-MS/MS analysis of the engineered strains showed that dimethylated sugars were efficiently produced, and that these were incorporated ino the anthracycline biosynthetic pathway to produce the novel dimethylated anthracycline N,N-dimethyldaunorubicin. Further downstream tailoring steps catalysed by the cytochrome P450 monooxygenase DoxA exhibited limited efficacy with N,N-dimethylated substrates. This resulted in only low production levels of N,N-dimethyldaunorubicin and no N,N-dimethyldoxorubicin, most likely due to the low affinity of DoxA for dimethylated substrates. Discussion: S. peucetius G001 was engineered such as to produce N,N-dimethylated sugars, which were incorporated into the biosynthetic pathway. This allowed the successful production of N,N-dimethyldaunorubicin, an anticancer drug with reduced cytotoxicity. DoxA is the key enzyme that determines the efficiency of the biosynthesis of N,N-dimethylated anthracyclines, and engineering of this enzyme will be a major step forwards towards the efficient production of more N,N-dimethylated anthracyclines, including N,N-dimethyldoxorubicin. This study provides valuable insights into the biosynthesis of clinically relevant daunorubicin derivatives, highlighting the importance of combinatorial biosynthesis.

7.
J Med Chem ; 66(16): 11390-11398, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37561481

RESUMEN

The anthracycline anti-cancer drugs are intensely used in the clinic to treat a wide variety of cancers. They generate DNA double strand breaks, but recently the induction of chromatin damage was introduced as another major determinant of anti-cancer activity. The combination of these two events results in their reported side effects. While our knowledge on the structure-activity relationship of anthracyclines has improved, many structural variations remain poorly explored. Therefore, we here report on the preparation of a diverse set of anthracyclines with variations within the sugar moiety, amine alkylation pattern, saccharide chain and aglycone. We assessed the cytotoxicity in vitro in relevant human cancer cell lines, and the capacity to induce DNA- and chromatin damage. This coherent set of data allowed us to deduce a few guidelines on anthracycline design, as well as discover novel, highly potent anthracyclines that may be better tolerated by patients.


Asunto(s)
Antraciclinas , Neoplasias , Humanos , Antraciclinas/farmacología , Antraciclinas/química , Doxorrubicina/farmacología , Antibióticos Antineoplásicos/química , Inhibidores de Topoisomerasa II , Cromatina , ADN/metabolismo , Neoplasias/tratamiento farmacológico
8.
J Med Chem ; 63(21): 12814-12829, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-33064004

RESUMEN

Anthracycline anticancer drugs doxorubicin and aclarubicin have been used in the clinic for several decades to treat various cancers. Although closely related structures, their molecular mode of action diverges, which is reflected in their biological activity profile. For a better understanding of the structure-function relationship of these drugs, we synthesized ten doxorubicin/aclarubicin hybrids varying in three distinct features: aglycon, glycan, and amine substitution pattern. We continued to evaluate their capacity to induce DNA breaks, histone eviction, and relocated topoisomerase IIα in living cells. Furthermore, we assessed their cytotoxicity in various human tumor cell lines. Our findings underscore that histone eviction alone, rather than DNA breaks, contributes strongly to the overall cytotoxicity of anthracyclines, and structures containing N,N-dimethylamine at the reducing sugar prove that are more cytotoxic than their nonmethylated counterparts. This structural information will support further development of novel anthracycline variants with improved anticancer activity.


Asunto(s)
Aclarubicina/química , Antineoplásicos/química , ADN-Topoisomerasas de Tipo II/metabolismo , Doxorrubicina/química , Polisacáridos/química , Antraciclinas/química , Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Histonas/metabolismo , Humanos , Relación Estructura-Actividad
9.
ACS Cent Sci ; 5(5): 781-788, 2019 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-31139714

RESUMEN

The broad application of well-defined synthetic oligosaccharides in glycobiology and glycobiotechnology is largely hampered by the lack of sufficient amounts of synthetic carbohydrate specimens. Insufficient knowledge of the glycosylation reaction mechanism thwarts the routine assembly of these materials. Glycosyl cations are key reactive intermediates in the glycosylation reaction, but their high reactivity and fleeting nature have precluded the determination of clear structure-reactivity-stereoselectivity principles for these species. We report a combined experimental and computational method that connects the stereoselectivity of oxocarbenium ions to the full ensemble of conformations these species can adopt, mapped in conformational energy landscapes (CEL), in a quantitative manner. The detailed description of stereoselective SN1-type glycosylation reactions firmly establishes glycosyl cations as true reaction intermediates and will enable the generation of new stereoselective glycosylation methodology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA