Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Toxicol Appl Pharmacol ; 483: 116835, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38272317

RESUMEN

Actin-interacting proteins are important molecules for filament assembly and cytoskeletal signaling within vascular endothelium. Disruption in their interactions causes endothelial pathogenesis through redox imbalance. Actin filament redox regulation remains largely unexplored, in the context of pharmacological treatment. This work focused on the peptidyl methionine (M) redox regulation of actin-interacting proteins, aiming at elucidating its role on governing antioxidative signaling and response. Endothelial EA.hy926 cells were subjected to treatment with salvianolic acid B (Sal B) and tert-butyl-hydroperoxide (tBHP) stimulation. Mass spectrometry was employed to characterize redox status of proteins, including actin, myosin-9, kelch-like erythroid-derived cap-n-collar homology-associated protein 1 (Keap1), plastin-3, prelamin-A/C and vimentin. The protein redox landscape revealed distinct stoichiometric ratios or reaction site transitions mediated by M sulfoxide reductase and reactive oxygen species. In comparison with effects of tBHP stimulation, Sal B treatment prevented oxidation at actin M325, myosin-9 M1489/1565, Keap1 M120, plastin-3 M592, prelamin-A/C M187/371/540 and vimentin M344. For Keap1, reaction site was transitioned within its scaffolding region to the actin ring. These protein M oxidation regulations contributed to the Sal B cytoprotective effects on actin filament. Additionally, regarding the Keap1 homo-dimerization region, Sal B preventive roles against M120 oxidation acted as a primary signal driver to activate nuclear factor erythroid 2-related factor 2 (Nrf2). Transcriptional splicing of non-POU domain-containing octamer-binding protein was validated during the Sal B-mediated overexpression of NAD(P)H dehydrogenase [quinone] 1. This molecular redox regulation of actin-interacting proteins provided valuable insights into the phenolic structures of Sal B analogs, showing potential antioxidative effects on vascular endothelium.


Asunto(s)
Actinas , Antioxidantes , Benzofuranos , Depsidos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Actinas/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Vimentina/metabolismo , Estrés Oxidativo , Metionina , Factor 2 Relacionado con NF-E2/metabolismo , Oxidación-Reducción , Proteínas del Citoesqueleto/metabolismo , Miosinas/metabolismo , Miosinas/farmacología
2.
Toxicol Appl Pharmacol ; 472: 116571, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37269934

RESUMEN

Bacterial lipopolysaccharide (LPS) is a toxic stimulant to macrophage inflammation. Inflammation intersects cell metabolism and often directs host immunopathogenesis stress. We aim here at pharmacological discovering of formononetin (FMN) action, to which anti-inflammatory signaling spans across immune membrane receptors and second messenger metabolites. In ANA-1 macrophage stimulated by LPS, and simultaneous treatment with FMN, results show the Toll-like receptor 4 (TLR4) and estrogen receptor (ER) signals, in concert with reactive oxygen species (ROS) and cyclic adenosine monophosphate (cAMP), respectively. LPS stimulates inactivation of the ROS-dependent nuclear factor erythroid 2-related factor 2 (Nrf2) by upregulating TLR4, but it does not affect cAMP. However, FMN treatment not only activates Nrf2 signaling by TLR4 inhibition, but also it activates cAMP-dependent protein kinase activities by upregulating ER. The cAMP activity gives rise to phosphorylation (p-) of protein kinase A, liver kinase B1 and 5'-AMP activated protein kinase (AMPK). Moreover, bidirectional signal crosstalk is amplified between p-AMPK and ROS, as FMN combinational validation with AMPK activator/inhibitor/target small-interfering RNA or ROS scavenger. The signal crosstalk is well positioned serving as the 'plug-in' knot for rather long signaling axis, and the immune-to-metabolic circuit via ER/TLR4 signal transduction. Collectively, convergence of the FMN-activated signals drives significant reduction of cyclooxygenase-2, interleukin-6 and NLR family pyrin domain-containing protein 3, in LPS-stimulated cell. Although anti-inflammatory signaling is specifically related to the immune-type macrophage, the p-AMPK antagonizing effect arises from FMN combination with ROS scavenger H-bond donors. Information of our work assists in predictive traits against macrophage inflammatory challenges, using phytoestrogen discoveries.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Receptor Toll-Like 4 , Humanos , Especies Reactivas de Oxígeno/metabolismo , Receptor Toll-Like 4/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Lipopolisacáridos/toxicidad , Factor 2 Relacionado con NF-E2/metabolismo , Transducción de Señal , Macrófagos , Inflamación/inducido químicamente , Inflamación/metabolismo , Antiinflamatorios/farmacología
3.
Food Chem Toxicol ; 171: 113513, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36436616

RESUMEN

Mitochondrion-related cardiotoxicity due to cardiotoxin stimuli is closely linked to abnormal activities of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α), followed by co-inactivation of nuclear respiratory factor-1(NRF1). Pharmacological interventions targeting mitochondria may be effective for developing agents against cardiotoxicity. Herein, in triptolide-treated H9C2 cardiomyocytes, we observed defective mitochondrial biogenesis and respiration, characterized by depletion of mitochondrial mass and mitochondrial DNA copy number, downregulation of mitochondrial respiratory chain complexes subunits, and disorders of mitochondrial membrane potential and mitochondrial oxidative phosphorylation. Dysregulation of mitochondria led to cardiac pathological features, such as myocardial fiber fracture, intercellular space enlargement, and elevation of serum aspartate aminotransferase, creatine kinase isoenzyme, lactate dehydrogenase, and cardiac troponin I. However, following calycosin treatment, an active compound from Astragali Radix, the mitochondrion-related disorders at both cell and tissue levels were significantly ameliorated, which was facilitated by the activation of PGC-1α via deacetylation, followed by NRF1 co-activation. Calycosin-enhanced PGC-1α deacetylation is impelled by increasing sirtuin-1 expression and NAD+/NADH ratio. PGC-1α/NRF1 signaling in calycosin-mediated mitochondrial biogenesis protection was further confirmed by NRF1 knockdown and PGC-1α inhibition with SR18292. We conclude that calycosin ameliorated triptolide-induced cardiotoxicity by protecting PGC-1α/NRF1-dependent cardiac mitochondrial biogenesis and respiration, which is the druggable pathway for cardiotoxicity mitigation.


Asunto(s)
Cardiotoxicidad , Factores de Transcripción , Humanos , Factores de Transcripción/metabolismo , Biogénesis de Organelos , Fosforilación Oxidativa , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA