RESUMEN
Moiré superlattices induced by twisted van der Waals (vdW) heterostructures or homostructures have recently gained significant attention due to their potential to generate exotic strong-correlation electronic and phonon phenomena. However, the lack of dynamic tuning for interlayer coupling of moiré superlattices hinders a thorough understanding and development of the moiré correlation state. Here, we present a dynamic tuning method for twisted WSe2/WSe2 homobilayers using a diamond anvil cell (DAC). We demonstrate the powerful tuning of interlayer coupling and observe an enhanced response to pressure for interlayer breathing modes and the rapid descent of indirect excitons in twisted WSe2/WSe2 homobilayers. Our findings indicate that the introduction of a moiré superlattice for WSe2 bilayers gives rise to hybridized excitons, which lead to the different pressure-evolution exciton behaviors compared to natural WSe2 bilayers. Our results provide a novel understanding of moiré physics and offer an effective method to tune interlayer coupling of moiré superlattices.
RESUMEN
The exploration of moiré superlatticesholds promising potential to uncover novel quantum phenomena emerging from the interplay of atomic structure and electronic correlation . However, the impact of the moiré potential modulation on the number of twisted layers has yet to be experimentally explored. Here, this work synthesizes a twisted WSe2 homotrilayer using a dry-transfer method and investigates the enhancement of the moiré potential with increasing number of twisted layers. The results of the study reveal the presence of multiple exciton resonances with positive or negative circularly polarized emission in the WSe2 homostructure with small twist angles, which are attributed to the excitonic ground and excited states confined to the moiré potential. The distinct g-factor observed in the magneto-optical spectroscopy is also shown to be a result of the confinement of the exciton in the moiré potential. The moiré potential depths of the twisted bilayer and trilayer homostructures are found to be 111 and 212 meV, respectively, an increase of 91% from the bilayer structure. These findings demonstrate that the depth of the moiré potential can be manipulated by adjusting the number of stacked layers, providing a promising avenue for exploration into highly correlated quantum phenomena.
RESUMEN
Monolayer transition metal dichalcogenides (TMDs) have a crystalline structure with broken spatial inversion symmetry, making them promising candidates for valleytronic applications. However, the degree of valley polarization is usually not high due to the presence of intervalley scattering. Here, we use the nanoindentation technique to fabricate strained structures of WSe2 on Au arrays, thus demonstrating the generation and detection of strained localized excitons in monolayer WSe2. Enhanced emission of strain-localized excitons was observed as two sharp photoluminescence (PL) peaks measured using low-temperature PL spectroscopy. We attribute these emerging sharp peaks to excitons trapped in potential wells formed by local strains. Furthermore, the valley polarization of monolayer WSe2 is modulated by a magnetic field, and the valley polarization of strained localized excitons is increased, with a high value of up to approximately 79.6%. Our results show that tunable valley polarization and localized excitons can be realized in WSe2 monolayers, which may be useful for valleytronic applications.
RESUMEN
The layered crystal of EuSn_{2}As_{2} has a Bi_{2}Te_{3}-type structure in rhombohedral (R3[over ¯]m) symmetry and has been confirmed to be an intrinsic magnetic topological insulator at ambient conditions. Combining ab initio calculations and in situ x-ray diffraction measurements, we identify a new monoclinic EuSn_{2}As_{2} structure in C2/m symmetry above â¼14 GPa. It has a three-dimensional network made up of honeycomblike Sn sheets and zigzag As chains, transformed from the layered EuSn_{2}As_{2} via a two-stage reconstruction mechanism with the connecting of Sn-Sn and As-As atoms successively between the buckled SnAs layers. Its dynamic structural stability has been verified by phonon mode analysis. Electrical resistance measurements reveal an insulator-metal-superconductor transition at low temperature around 5 and 15 GPa, respectively, according to the structural conversion, and the superconductivity with a T_{C} value of â¼4 K is observed up to 30.8 GPa. These results establish a high-pressure EuSn_{2}As_{2} phase with intriguing structural and electronic properties and expand our understandings about the layered magnetic topological insulators.
RESUMEN
Two dimensional atomic crystals with pentagonal building blocks have attracted extensive interest in recent years for their fundamental significance and potential applications in nanoscale devices. Here, with the help of ab initio calculations based on density functional theory, we report a unique pentagonal structured NiS2 monolayer in P4[combining macron]21m symmetry, named P-NiS2. Its dynamic stability has been confirmed by phonon mode analysis. Molecular dynamics simulations and total-energy calculations show that this new P-NiS2 has robust thermal stability and energetically more stable than all other reported NiS2 monolayer structures. Electronic band structure calculations show that it is a semiconductor with an indirect band gap of 1.94 eV. Furthermore, we find that small strain triggers a transition from the indirect to direct band gap for this P-NiS2, suggesting its great potential for applications based on strain-engineering techniques.
RESUMEN
Moiré superlattices have emerged as a promising platform for investigating and designing optically generated excitonic properties. The electronic band structure of these systems can be qualitatively modulated by interactions between the top and bottom layers, leading to the emergence of new quantum phenomena. However, the inhomogeneities present in atomically thin bilayer moiré superlattices created by artificial stacking have hindered a deeper understanding of strongly correlated electron properties. In this work, we report the fabrication of homogeneous moiré superlattices with controllable twist angles using a 2L-WSe2/2L-WSe2 homostructure. By adding extra layers, we provide additional degrees of freedom to tune the optical properties of the moiré superlattices while mitigating the nonuniformity problem. The presence of an additional bottom layer acts as a buffer, reducing the inhomogeneity of the moiré superlattice, while the encapsulation effect of the additional top and bottom WSe2 monolayers further enhances the localized moiré excitons. Our observations of alternating circularly polarized photoluminescence confirm the existence of moiré excitons, and their characteristics were further confirmed by theoretical calculations. These findings provide a fundamental basis for studying moiré potential correlated quantum phenomena and pave the way for their application in quantum optical devices.
RESUMEN
The stacking of twisted two-dimensional (2D) layered materials has led to the creation of moiré superlattices, which have become a new platform for the study of quantum optics. The strong coupling of moiré superlattices can result in flat minibands that boost electronic interactions and generate interesting strongly correlated states, including unconventional superconductivity, Mott insulating states, and moiré excitons. However, the impact of adjusting and localizing moiré excitons in Van der Waals heterostructures has yet to be explored experimentally. Here, we present experimental evidence of the localization-enhanced moiré excitons in the twisted WSe2/WS2/WSe2 heterotrilayer with type-II band alignments. At low temperatures, we observed multiple excitons splitting in the twisted WSe2/WS2/WSe2 heterotrilayer, which is manifested as multiple sharp emission lines, in stark contrast to the moiré excitonic behavior of the twisted WSe2/WS2 heterobilayer (which has a linewidth 4 times wider). This is due to the enhancement of the two moiré potentials in the twisted heterotrilayer, enabling highly localized moiré excitons at the interface. The confinement effect of moiré potential on moiré excitons is further demonstrated by changes in temperature, laser power, and valley polarization. Our findings offer a new approach for localizing moiré excitons in twist-angle heterostructures, which has the potential for the development of coherent quantum light emitters.
RESUMEN
The investigation of in-plane two-dimensional (2D) anisotropic materials has garnered significant attention due to their exceptional electronic, optical, and mechanical characteristics. The anisotropic optical properties and angle-dependent photodetectors based on 2D anisotropic materials have been extensively studied. However, novel in-plane anisotropic materials still need to be explored to satisfy for distinct environments and devices. Here, we report the remarkable anisotropic behavior of excitons and demonstrate a unique linear-dichroism transition of absorption between ultraviolet and visible light in layered silicon phosphide (SiP) through the analysis of polarization photoluminescence (PL) and absorbance spectra. Its high absorption linear dichroism ratio of 1.16 at 388 nm, 1.15 at 532 nm, and 1.19 at 733 nm is revealed, suggesting the brilliant non-isotropic responses. The robust periodic variation of the A1 and A2 Raman modes in 2D SiP materials allows for the determination of their crystal orientation. Furthermore, the presence of indirect excitons with phonon sidebands in the temperature-dependent PL spectra exhibits non-monotonic energy shifts with increasing temperature, which is attributed to an enhanced electron-phonon interaction and thermal expansion. Our findings provide valuable insights into the fundamental physical properties of layered SiP and offer guidelines for designing polarization-sensitive photodetectors and angle-dependent devices based on 2D anisotropic materials.
RESUMEN
Stacking two-dimensional layered materials such as graphene and transitional metal dichalcogenides with nonzero interlayer twist angles has recently become attractive because of the emergence of novel physical properties. Stacking of one-dimensional nanomaterials offers the lateral stacking offset as an additional parameter for modulating the resulting material properties. Here, we report that the edge states of twisted bilayer zigzag graphene nanoribbons (TBZGNRs) can be tuned with both the twist angle and the stacking offset. Strong edge state variations in the stacking region are first revealed by density functional theory (DFT) calculations. We construct and characterize twisted bilayer zigzag graphene nanoribbon (TBZGNR) systems on a Au(111) surface using scanning tunneling microscopy. A detailed analysis of three prototypical orthogonal TBZGNR junctions exhibiting different stacking offsets by means of scanning tunneling spectroscopy reveals emergent near-zero-energy states. From a comparison with DFT calculations, we conclude that the emergent edge states originate from the formation of flat bands whose energy and spin degeneracy are highly tunable with the stacking offset. Our work highlights fundamental differences between 2D and 1D twistronics and spurs further investigation of twisted one-dimensional systems.
RESUMEN
Cyanobacteriochromes (CBCRs) bind linear tetrapyrrole chromophores, mostly phycocyanobilin (PCB), and exhibit considerable spectral diversity with a high potential for biotechnological applications. Particular attention has been given to the conversion into intrinsic biliverdin (BV) incorporation due to the absence of PCB in mammalian cells. Our recent study discovered that a red/green CBCR of Spirulina subsalsa, SPI1085g3, was covalently attached to PCB and exhibited strong red fluorescence with a unique red/dark switch. In this study, we found that SPI1085g3 could be modestly chromophorylated with BV and absorb somewhat shifted (10 nm) red light, while the single C448S mutant could efficiently bind BV and exhibit unidirectional photoconversion and moderate dark reversion. The fluorescence in its dark-adapted state was switched off by red light, followed by a moderate recovery in the dark, and these were properties similar to those of PCB-binding SPI1085g3. Furthermore, by introducing the CY motif into the conserved CH motif for chromophore attachment, we developed another variant, C448S_CY, which showed increased BV-binding efficiency. As expected, C448S_CY had a significant enhancement in fluorescence quantum yield, reaching that of PCB-binding SPI1085g3 (0.14). These BV-binding CBCRs offer an improved platform for the development of unique photoswitchable fluorescent proteins compared with PCB-binding CBCRs.
RESUMEN
OBJECTIVES: Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia in patients with heart valve disease. Our aim was to summarize our experience and evaluate the efficacy and safety of the Cox maze III procedure combined with valve surgery in patients with AF. METHODS: A retrospective, observational analysis was performed for all consecutive patients underwent maze III procedure combined with valve surgery between October 2015 and June 2019. In this trial, we used a monopolar radiofrequency (RF) ablation in addition to cut and sew technique to treat AF. RESULTS: 66 patients (37 female, 56.1%) with persistent or long-lasting persistent AF associated with valve disease were identified. The mean age was 54.2 ± 8.4 years (range, 30 to 73 years). Overall hospital mortality was 3.0%. The duration of cardiopulmonary bypass and aortic cross clamping was 175.4 ± 32.9 and 115.6 ± 22.8 min respectively. The first 24 h drainage was 488.6 ± 293.3 ml. The postoperative hospital stay was 14.8 ± 8.3 days. The postoperative incidence of permanent pacemaker implantation, reoperation for bleeding, renal failure required hemodialysis, and stroke was 4.5, 1.5, 4.5% and 0 respectively. The frequency of sinus rhythm was 91.7, 93.1, 94.7, 93.3 and 89.5% at 1, 3, 6, 12, and 24 months respectively. CONCLUSIONS: The Cox-Maze III procedure is safe in the surgical treatment of AF associated with valve disease, and efficacious for sinus rhythm maintenance, with low morbidity and mortality.
Asunto(s)
Fibrilación Atrial/cirugía , Ablación por Catéter/métodos , Enfermedades de las Válvulas Cardíacas/cirugía , Procedimiento de Laberinto/métodos , Adulto , Anciano , Fibrilación Atrial/etiología , Fibrilación Atrial/mortalidad , China/epidemiología , Femenino , Enfermedades de las Válvulas Cardíacas/complicaciones , Mortalidad Hospitalaria/tendencias , Humanos , Masculino , Persona de Mediana Edad , Periodo Posoperatorio , Reoperación , Estudios Retrospectivos , Factores de Tiempo , Resultado del TratamientoRESUMEN
Degradation of basement membrane of pulmonary capillaries was the main pathological feature of lung injury following cardiopulmonary bypass (CPB). Matrix metalloproteinases (MMPs) contributed to the development of lung injury following CPB via degrading extracellular matrix and regulating cytokines. So, understanding the effects of MMPs in the lung injury following CPB may be helpful to prevent and treat the complications mentioned above.
Asunto(s)
Puente Cardiopulmonar/efectos adversos , Metaloproteinasas de la Matriz/metabolismo , Síndrome de Dificultad Respiratoria/enzimología , Animales , Humanos , Metaloproteinasas de la Matriz/clasificación , Síndrome de Dificultad Respiratoria/etiología , Síndrome de Dificultad Respiratoria/fisiopatologíaRESUMEN
Acute lung injury (ALI) was one of the major complications after cardiopulmonary bypass (CPB). Matrix metalloproteinases (MMPs) play an important role in ALI following CPB. In this study, we investigated the effects of doxycycline (DOX), a potent MMP inhibitor, on MMP-9 and ALI in the rat model of CPB. 48 adult male Sprague-Dawley rats were randomized into four groups: group I (Control group, underwent cannulation + heparinization only); group II (CPB group, underwent 60-minutes of normothermic CPB); group III (Low-dose treatment group, underwent 60-minutes of normothermic CPB with DOX gavage 30 mg/kg ×1 week ahead of CPB); and group IV (High-dose treatment group, underwent 60-minutes of normothermic CPB with DOX gavage 60 mg/kg ×1 week ahead of CPB). The effects of doxycycline on ALI were determined by measuring the lung Wet/Dry ratio, the inflammation of bronchoalveolar lavage fluid (BALF) and the ultrastructural changes of the lungs. The role of doxycycline on MMP-9 was assessed by the plasma concentration, the activity and the expression in lung tissue. Our results demonstrated that the lung Wet/Dry weight ratio and the inflammatory mediators (TNF-α, IL-1ß) in BALF were decreased significantly with doxycycline treatment. The lung damages were attenuated by doxycycline. The levels of plasma concentration, the activity and the expression of MMP-9 in lung tissue were suppressed with doxycycline and the effects were dose dependent. Doxycycline could suppress the expression of MMP-9 and cytokines, and improve the ALI following CPB.
Asunto(s)
Lesión Pulmonar Aguda/prevención & control , Puente Cardiopulmonar/efectos adversos , Doxiciclina/farmacología , Metaloproteinasa 9 de la Matriz/metabolismo , Animales , Líquido del Lavado Bronquioalveolar , Modelos Animales de Enfermedad , Inflamación , Interleucina-1beta/metabolismo , Pulmón/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
AIM: To investigate microvascular injury quantitatively in the small bowel with respect to cardiopulmonary bypass (CPB) and related mechanisms. METHODS: In 10 male SD rats, normothermic CPB was established and continued with a flow rate of 100-150 mL/kg per minute for 60 min, while another 10 sham-operated animals served as controls. An approximate 10-cm loop of the terminal ileum was exteriorized for observation by means of intravital fluorescence microscopy. The small bowel microcirculatory network including arterioles, capillaries, and collecting venules was observed prior to CPB, CPB 30 min, CPB 60 min, post-CPB 60 min and post-CPB 120 min. The intestinal capillary perfusion, microvascular permeability and leukocyte adherence were also measured. RESULTS: The systemic hemodynamics remained stable throughout the experiment in both groups. In CPB animals, significant arteriolar vasoconstriction, blood velocity reduction and functional capillary density diminution were found. As concomitances, exaggerated albumin extravasation and increased leukocyte accumulation were also noted. These changes were more pronounced and there were no signs of restitution at the end of the observation period. CONCLUSION: CPB induces significant microcirculatory injury of the small bowel in rats. The major underlying mechanisms are blood flow redistribution and generalized inflammatory response associated with CPB.
Asunto(s)
Capilares/lesiones , Puente Cardiopulmonar/efectos adversos , Intestino Delgado , Microcirculación , Animales , Arteriolas/anatomía & histología , Arteriolas/lesiones , Capilares/anatomía & histología , Permeabilidad Capilar , Hemodinámica , Humanos , Intestino Delgado/irrigación sanguínea , Intestino Delgado/patología , Leucocitos/metabolismo , Masculino , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Flujo Sanguíneo RegionalRESUMEN
BACKGROUND: Elucidating the underlying mechanisms and developing protective strategies for the pathophysiological consequences of cardiopulmonary bypass (CPB) have been hampered due to the absence of a satisfactory long-term recovery animal model. The objective of this study was to establish a survival experimental model of CPB in rats to meet the requirement of these studies. MATERIALS AND METHODS: Male SD rats (450-550 g) were randomly divided into CPB (n = 10) group and Sham group (n = 10). All rats were anaesthetized and mechanically ventilated. The femoral artery and vein were cannulated for continuous blood pressure recordings and fluid replacement, respectively. The CPB circuit comprised a venous reservoir, a membrane oxygenator, and a roller pump. Blood was drained from the right atrium via a jugular vein catheter and returned to the right carotid artery. Priming consisted of 8 ml of homologous blood and 8 ml of colloid. CPB was conducted for 60 min at a flow rate of 100-150 ml/kg/min in the CPB group. Haemodynamic investigations, blood gas analysis, and survival studies were performed subsequently. RESULTS: Our data show that the rat model principally simulated the clinical setting of CPB in terms of its construction, configuration, performance, material surface area, and priming volume to blood volume ratio. All CPB rats survived and the 2-week follow-up period remained uneventful. CONCLUSIONS: The rat model of CPB was easy to establish and was associated with excellent survival. This model should facilitate the investigation of the pathophysiological processes concerning CPB-related multiple organ dysfunction and possible protective interventions.