RESUMEN
KEY MESSAGE: A superior allele of wheat gene TaGL3.3-5B was identified and could be used in marker-assisted breeding in wheat. Identifying the main genes which mainly regulate the yield-associated traits can significantly increase the wheat production. In this study, gene TaGL3.3 was cloned from common wheat according to the sequence of OsPPKL3. A SNP in the 8th exon of TaGL3.3-5B, T/C in coding sequence (CDS), which resulted in an amino acid change (Val/Ala), was identified between the low 1000-kernel weight (TKW) wheat Chinese Spring and the high TKW wheat Xinong 817 (817). Subsequently, association analysis in the mini-core collection (MCC) and the recombinant inbred lines (RIL) revealed that the allele TaGL3.3-5B-C (from 817) was significantly correlated with higher TKW. The high frequency of TaGL3.3-5B-C in the Chinese modern wheat cultivars indicated that it was selected positively in wheat breeding programs. The overexpression of TaGL3.3-5B-C in Arabidopsis resulted in shorter pods and longer grains than those of wild-type counterparts. Additionally, TaGL3.3 expressed a tissue-specific pattern in wheat as revealed by qRT-PCR. We also found that 817 showed higher expression of TaGL3.3 than that in Chinese Spring (CS) during the seed development. These results demonstrate that TaGL3.3 plays an important role in the formation of seed size and weight. Allele TaGL3.3-5B-C is associated with larger and heavier grains that are beneficial to wheat yield improvement.
Asunto(s)
Fitomejoramiento , Triticum , Alelos , Fenotipo , Semillas/genéticaRESUMEN
Gluten proteins are the major storage protein fraction in the mature wheat grain. They are restricted to the starchy endosperm, which defines the viscoelastic properties of wheat dough. The synthesis of these storage proteins is controlled by the endoplasmic reticulum (ER) and is directed into the vacuole via the Golgi apparatus. In the present study, transcriptome analysis was used to explore the potential mechanism within critical stages of grain development of wheat cultivar "Shaannong 33" and its sister line used as the control (CK). Samples were collected at 10 DPA (days after anthesis), 14 DPA, 20 DPA, and 30 DPA for transcriptomic analysis. The comparative transcriptome analysis identified that a total of 18,875 genes were differentially expressed genes (DEGs) between grains of four groups "T10 vs. CK10, T14 vs. CK14, T20 vs. CK20, and T30 vs. CK30", including 2824 up-regulated and 5423 down-regulated genes in T30 vs. CK30. Further, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment highlighted the maximum number of genes regulating protein processing in the endoplasmic reticulum (ER) during grain enlargement stages (10-20 DPA). In addition, KEGG database analysis reported 1362 and 788 DEGs involved in translation, ribosomal structure, biogenesis, flavonoid biosynthesis pathway and intracellular trafficking, secretion, and vesicular transport through protein processing within ER pathway (ko04141). Notably, consistent with the higher expression of intercellular storage protein trafficking genes at the initial 10 DPA, there was relatively low expression at later stages. Expression levels of nine randomly selected genes were verified by qRT-PCR, which were consistent with the transcriptome data. These data suggested that the initial stages of "cell division" played a significant role in protein quality control within the ER, thus maintaining the protein quality characteristics at grain maturity. Furthermore, our data suggested that the protein synthesis, folding, and trafficking pathways directed by a different number of genes during the grain enlargement stage contributed to the observed high-quality characteristics of gluten protein in Shaannong 33 (Triticum aestivum L.).
Asunto(s)
Perfilación de la Expresión Génica , Triticum , Triticum/metabolismo , Glútenes/genética , Glútenes/metabolismo , Grano Comestible/metabolismo , Transcriptoma , Transporte de Proteínas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las PlantasRESUMEN
Plant height is a key agronomic trait that is closely to the plant morphology and lodging resistance in wheat. However, at present, the few dwarf genes widely used in wheat breeding have narrowed wheat genetic diversity. In this study, we selected a semi-dwarf wheat mutant dwarf33 that exhibits decreased plant height with little serious negative impact on other agronomic traits. Genetic analysis and mutant gene mapping indicated that dwarf33 contains a new recessive semi-dwarf gene Rht-SN33d, which was mapped into ~1.3 Mb interval on the 3DL chromosome. The gibberellin metabolism-related gene TraesCS3D02G542800, which encodes gibberellin 2-beta-dioxygenase, is considered a potential candidate gene of Rht-SN33d. Rht-SN33d reduced plant height by approximately 22.4% in mutant dwarf33. Further study revealed that shorter stem cell length may be the main factor causing plant height decrease. In addition, the coleoptile length of dwarf33 was just 9.3% shorter than that of wild-type Shaannong33. These results will help to expand our understanding of new mechanisms of wheat height regulation, and obtain new germplasm for wheat improvement.
Asunto(s)
Giberelinas , Triticum , Triticum/genética , Fitomejoramiento , Mapeo Cromosómico/métodos , FenotipoRESUMEN
Wheat cultivar Shaannong 33 (SN33) has remained highly resistant to stripe rust in the field since its release in 2009. To unravel the genetic architecture of stripe rust resistance, seedlings of 161 recombinant inbred lines (RILs) from the cross Avocet S × SN33 were evaluated with two isolates (PST-Lab.1 and PST-Lab.2) of the stripe rust pathogen (Puccinia striiformis f. sp. tritici) in the greenhouse, and the RILs were evaluated in naturally or artificially inoculated field sites during two cropping seasons. The RILs and parents were genotyped with the wheat 55K single-nucleotide polymorphism array. Three genomic regions conferring seedling resistance were mapped on chromosomes 1DS, 2AS, and 3DS, and four consistent quantitative trait loci (QTL) for adult-plant resistance (APR) were detected on 1BL, 2AS, 3DL, and 6BS. The 2AS locus conferring all-stage resistance was identified as the resistant gene Yr17 located on 2NS translocation. The QTL identified on 1BL and 6BS likely correspond to Yr29 and Yr78, respectively. An APR QTL on 3DL explaining 5.8 to 12.2% of the phenotypic variation is likely to be new. Molecular marker detection assays with the 2NS segment (Yr17), Yr29, Yr78, and QYrsn.nwafu-3DL on a panel of 420 current Chinese wheat cultivars and breeding lines indicated that these genes were present in 11.4, 7.6, 14.8, and 7.4% of entries, respectively. The interactions among these genes and QTL were additive, suggesting their potential value in enhancing stripe rust resistance breeding materials as observed in the resistant parent. In addition, we also identified two leaf necrosis genes, Ne1 and Ne2; however, the F1 plants from cross Avocet S × SN33 survived, indicating that SN33 probably has another allele of Ne1 which allows seed to be harvested.
Asunto(s)
Resistencia a la Enfermedad , Triticum , Alelos , China , Resistencia a la Enfermedad/genética , Humanos , Fitomejoramiento , Enfermedades de las Plantas/genética , Triticum/genéticaRESUMEN
Cytoplasmic male sterility (CMS) plays an important role in the application of heterosis in wheat (Triticum aestivum L.). However, the molecular mechanism underlying CMS remains unknown. This study provides a comprehensive morphological and proteomic analysis of the anthers of a P-type CMS wheat line (P) and its maintainer line, Yanshi 9 hao (Y). Cytological observations indicated that the P-type CMS line shows binucleate microspore abortion. In this line, the tapetum degraded early, leading to anther cuticle defects, which could not provide the nutrition needed for microspore development in a timely manner, thus preventing the development of the microspore to the normal binucleate stage. Proteomic analysis revealed novel proteins involved in P-type CMS. Up to 2576 differentially expressed proteins (DEPs) were quantified in all anthers, and these proteins were significantly enriched in oxidative phosphorylation, glycolysis/gluconeogenesis, citrate cycle (TCA cycle), starch and sucrose metabolism, phenylpropanoid biosynthesis, and pyruvate metabolism pathways. These proteins may comprise a network that regulates male sterility in wheat. Based on the function analysis of DEPs involved in the complex network, we concluded that the P-type CMS line may be due to cellular dysfunction caused by disturbed carbohydrate metabolism, inadequate energy supply, and disturbed protein synthesis. These results provide insights into the molecular mechanism underlying male sterility and serve as a valuable resource for researchers in plant biology, in general, and plant sexual reproduction, in particular.
Asunto(s)
Infertilidad Vegetal/fisiología , Proteínas de Plantas/metabolismo , Polen/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Triticum/metabolismo , Citoplasma/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Infertilidad Vegetal/genética , Proteínas de Plantas/genética , Polen/genética , Polen/crecimiento & desarrollo , Proteoma/genética , Triticum/genética , Triticum/crecimiento & desarrolloRESUMEN
Drought-response-element binding (DREB)-like transcription factors can significantly enhance plant tolerance to water stress. However, most research on DREB-like proteins to date has been conducted in growth chambers or greenhouses, so there is very little evidence available to support their practical use in the field. In this study, we overexpressed GmDREB1 from soybean in two popular wheat varieties and conducted drought-tolerance experiments across a range of years, sites, and drought-stress regimes. We found that the transgenic plants consistently exhibited significant improvements in yield performance and a variety of physiological traits compared with wild-type plants when grown under limited water conditions in the field, for example showing grain yield increases between 4.79-18.43%. Specifically, we found that the transgenic plants had reduced membrane damage and enhanced osmotic adjustment and photosynthetic efficiency compared to the non-transgenic controls. Three enzymes from the biosynthetic pathway of the phytohormone melatonin were up-regulated in the transgenic plants, and external application of melatonin was found to improve drought tolerance. Together, our results demonstrate the utility of transgenic overexpression of GmDREB1 to improve the drought tolerance of wheat in the field.
Asunto(s)
Sequías , Triticum , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Glycine max/genética , Glycine max/metabolismo , Estrés Fisiológico , Triticum/genética , Triticum/metabolismoRESUMEN
The 12-oxo-phytodienoic acid reductases (OPRs), which belong to the old yellow enzyme (OYE) family, are flavin mononucleotide (FMN)-dependent oxidoreductases with critical functions in plants. Despite the clear characteristics of growth and development, as well as the defense responses in Arabidopsis, tomato, rice, and maize, the potential roles of OPRs in wheat are not fully understood. Here, forty-eight putative OPR genes were found and classified into five subfamilies, with 6 in sub. I, 4 in sub. II, 33 in sub. III, 3 in sub. IV, and 2 in sub. V. Similar gene structures and conserved protein motifs of TaOPRs in wheat were identified in the same subfamilies. An analysis of cis-acting elements in promoters revealed that the functions of OPRs in wheat were mostly related to growth, development, hormones, biotic, and abiotic stresses. A total of 14 wheat OPR genes were identified as tandem duplicated genes, while 37 OPR genes were segmentally duplicated genes. The expression patterns of TaOPRs were tissue- and stress-specific, and the expression of TaOPRs could be regulated or induced by phytohormones and various stresses. Therefore, there were multiple wheat OPR genes, classified into five subfamilies, with functional diversification and specific expression patterns, and to our knowledge, this was the first study to systematically investigate the wheat OPR gene family. The findings not only provide a scientific foundation for the comprehensive understanding of the wheat OPR gene family, but could also be helpful for screening more candidate genes and breeding new varieties of wheat, with a high yield and stress resistance.
Asunto(s)
Genoma de Planta/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Estrés Fisiológico/genética , Triticum/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes/genética , Oryza/genética , Filogenia , Reguladores del Crecimiento de las Plantas/genética , Regiones Promotoras Genéticas/genética , Triticum/enzimología , Zea mays/metabolismoRESUMEN
BACKGROUND: Early maturity is one of the most important and complex agronomic traits in upland cotton (Gossypium hirsutum L). To dissect the genetic architecture of this agronomically important trait, a population consisting of 355 upland cotton germplasm accessions was genotyped using the specific-locus amplified fragment sequencing (SLAF-seq) approach, of which a subset of 185 lines representative of the diversity among the accessions was phenotypically characterized for six early maturity traits in four environments. A genome-wide association study (GWAS) was conducted using the generalized linear model (GLM) and mixed linear model (MLM). RESULTS: A total of 81,675 SNPs in 355 upland cotton accessions were discovered using SLAF-seq and were subsequently used in GWAS. Thirteen significant associations between eight SNP loci and five early maturity traits were successfully identified using the GLM and MLM; two of the 13 associations were common between the models. By computing phenotypic effect values for the associations detected at each locus, 11 highly favorable SNP alleles were identified for five early maturity traits. Moreover, dosage pyramiding effects of the highly favorable SNP alleles and significant linear correlations between the numbers of highly favorable alleles and the phenotypic values of the target traits were identified. Most importantly, a major locus (rs13562854) on chromosome Dt3 and a potential candidate gene (CotAD_01947) for early maturity were detected. CONCLUSIONS: This study identified highly favorable SNP alleles and candidate genes associated with early maturity traits in upland cotton. The results demonstrate that GWAS is a powerful tool for dissecting complex traits and identifying candidate genes. The highly favorable SNP alleles and candidate genes for early maturity traits identified in this study should be show high potential for improvement of early maturity in future cotton breeding programs.
Asunto(s)
Genoma de Planta , Gossypium/genética , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Cruzamiento , Mapeo Cromosómico , Fibra de Algodón , Estudio de Asociación del Genoma Completo , Genotipo , Desequilibrio de Ligamiento , FenotipoRESUMEN
SQUAMOSA promoter binding protein-like (SPL) genes encode plant-specific transcription factors that are involved in many fundamental developmental processes. Certain SPL genes contain sequences complementary to miR156, a microRNA (miRNA) that plays a role in modulating plant gene expression. In this study, 30 SPL genes were identified in the reference genome of Gossypium raimondii and 24 GhSPLs were cloned from Gossypium hirsutum. G. raimondii is regarded as the putative contributor of the D-subgenome of G. hirsutum. Comparative analysis demonstrated sequence conservation between GhSPLs and other plant species. GhSPL genes could be classified into seven subclades based on phylogenetic analysis, diverse intron-exon structure, and motif prediction. Within each subclade, genes shared a similar structure. Sequence and experimental analysis predicted that 18 GhSPL genes are putative targets of GhmiR156. Additionally, tissue-specific expression analysis of GhSPL genes showed that their spatiotemporal expression patterns during development progressed differently, with most genes having high transcript levels in leaves, stems, and flowers. Finally, overexpression of GhSPL3 and GhSPL18 in Arabidopsis plants demonstrated that these two genes are involved in the development of leaves and second shoots and play an integral role in promoting flowering. The flowering integrator GhSOC1 may bind to the promoter of GhSPL3 but not GhSPL18 to regulate flowering. In conclusion, our analysis of GhSPL genes will provide some gene resources and a further understanding of GhSPL3 and GhSPL18 function in flowering promotion. Furthermore, the comparative genomics and functional analysis deepened our understanding of GhSPL genes during upland cotton vegetative and reproductive growth.
Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genómica , Gossypium/genética , Familia de Multigenes , Arabidopsis/genética , Secuencia de Bases , Cromosomas de las Plantas/genética , Exones/genética , Flores/fisiología , Intrones/genética , Datos de Secuencia Molecular , Motivos de Nucleótidos/genética , Especificidad de Órganos/genética , Fenotipo , Filogenia , Hojas de la Planta/anatomía & histología , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Unión Proteica , Alineación de SecuenciaRESUMEN
(E)-ß-Farnesene (EßF) synthase catalyses the production of EßF, which for many aphids is the main or only component of the alarm pheromone causing the repellence of aphids and also functions as a kairomone for aphids' natural enemies. Many plants possess EßF synthase genes and can release EßF to repel aphids. In order to effectively recruit the plant-derived EßF synthase genes for aphid control, by using chloroplast transit peptide (CTP) of the small subunit of Rubisco (rbcS) from wheat (Triticum aestivum L.), we targeted AaßFS1, an EßF synthase gene from sweet wormwood (Artemisia annua L.), to the chloroplast of tobacco to generate CTP + AaßFS1 transgenic lines. The CTP + AaßFS1 transgenic tobacco plants could emit EßF at a level up to 19.25 ng/day per g fresh tissues, 4-12 fold higher than the AaßFS1 transgenic lines without chloroplast targeting. Furthermore, aphid/parasitoid behavioral bioassays demonstrated that the CTP + AaßFS1 transgenic tobacco showed enhanced repellence to green peach aphid (Myzus persicae) and attracted response of its parasitoid Diaeretiella rapae, thus affecting aphid infestation at two trophic levels. These data suggest that the chloroplast is an ideal subcellular compartment for metabolic engineering of plant-derived EßF synthase genes to generate a novel type of transgenic plant emitting an alarm pheromone for aphid control.
Asunto(s)
Áfidos/fisiología , Cloroplastos/enzimología , Regulación de la Expresión Génica de las Plantas , Nicotiana/enzimología , Nicotiana/genética , Pirofosfatasas/genética , Pirofosfatasas/metabolismo , Animales , Interacciones Huésped-Parásitos , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genéticaRESUMEN
As a quantitatively inherited trait related to high yield potential, grain weight (GW) development in wheat is constrained by abiotic stresses such as limited water supply and high temperature. Data from a doubled haploid population, derived from a cross of (Hanxuan 10 × Lumai 14), grown in four environments were used to explore the genetic basis of GW developmental behavior in unconditional and conditional quantitative trait locus (QTL) analyses using a mixed linear model. Thirty additive QTLs and 41 pairs of epistatic QTLs were detected, and were more frequently observed on chromosomes 1B, 2A, 2D, 4A, 4B and 7B. No single QTL was continually active during all stages or periods of grain growth. The QTLs with additive effects (A-QTLs) expressed in the period S1|S0 (the period from the flowering to the seventh day after) formed a foundation for GW development. GW development at these stages can be used as an index for screening superior genotypes under diverse abiotic stresses in a wheat breeding program. One QTL, i.e. Qgw.cgb-6A.2, showed high adaptability for water-limited and heat-stress environments. Many A-QTLs interacted with more than one other QTL in the two genetic models, such as Qgw.cgb-4B.2 interacted with five QTLs, showing that the genetic architecture underlying GW development involves a collective expression of genes with additive and epistatic effects.
Asunto(s)
Temperatura , Triticum/crecimiento & desarrollo , Triticum/genética , Agua , Cruzamiento , Cromosomas de las Plantas , Regulación del Desarrollo de la Expresión Génica , Genotipo , Haploidia , Fenotipo , Sitios de Carácter CuantitativoRESUMEN
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a serious yield-limiting factor for wheat production worldwide. The objective of this study was to identify and map a stripe rust resistance gene in wheat line Shaannong 104 using SSR markers. F(1), F(2) and F(3) populations from Shaannong 104/Mingxian 169 were inoculated with Chinese Pst race CYR32 in a greenhouse. Shaannong 104 carried a single dominant gene, YrSN104. Six potential polymorphic SSR markers identified in bulk segregant analysis were used to genotype F(2) and F(3) families. YrSN104 was closely linked with all six SSR markers on chromosome 1BS with genetic distances of 2.0 cM (Xgwm18, Xgwm273, Xbarc187), 2.6 cM (Xgwm11, Xbarc137) and 5.9 cM (Xbarc240). Pedigree analysis, pathogenicity tests using 26 Pst races, haplotyping of associated markers on isogenic lines carrying known stripe rust resistance genes, and associations with markers suggested that YrSN104 was a new resistance gene or an allele at the Yr24/Yr26 locus on chromosome 1BS. Deployment of YrSN104 singly or in combination to elite genotypes could play an effective role to lessen yield losses caused by stripe rust.
Asunto(s)
Cromosomas de las Plantas/genética , Genes de Plantas , Enfermedades de las Plantas/genética , Triticum/genética , Basidiomycota/genética , Basidiomycota/inmunología , Mapeo Cromosómico , Cruzamientos Genéticos , Ligamiento Genético , Genotipo , Haplotipos , Repeticiones de Microsatélite , Enfermedades de las Plantas/microbiología , Polimorfismo Genético , Triticum/microbiologíaRESUMEN
Sucrose non-fermenting1-related protein kinase 2 (SnRK2) plays a key role in plant stress signaling transduction pathways. In this study, one copy of TaSnRK2.7, a SnRK2 member of common wheat, was isolated and characterized for nucleotide diversity among 45 wheat accessions with different stress-response features. Most of the accessions were elite wheat cultivars, which had been subject to population bottlenecks and intensive selection during breeding. Nucleotide and haplotype diversity across the entire TaSnRK2.7-A region was 0.00076 and 0.590, respectively, and diversity in non-coding regions was higher than that in coding regions. Sliding-window analysis showed variable levels of nucleotide variation along the entire TaSnRK2.7-A region; the sixth intron and ninth exon represented variation-enriched regions. As predicted, neutrality tests revealed that population bottlenecks or purifying selection had acted on the TaSnRK2.7-A gene, a relatively conserved gene. Furthermore, strong linkage disequilibrium between SNP loci extends across the entire TaSnRK2.7-A region. These findings demonstrate that the TaSnRK2.7-A genomic region has evolved under extensive selection pressure during crop breeding.
Asunto(s)
Variación Genética , Proteínas de Plantas/genética , Estrés Fisiológico/genética , Triticum/enzimología , Triticum/genética , Secuencia de Bases , Cruzamiento , Análisis por Conglomerados , Sitios Genéticos/genética , Desequilibrio de Ligamiento/genética , Datos de Secuencia Molecular , Filogenia , Polimorfismo de Nucleótido Simple/genética , Selección Genética , Alineación de SecuenciaRESUMEN
Early leaf senescence negatively impacts the grain yield in wheat (Triticum aestivum L.). Induced mutants provide an important resource for mapping and cloning of genes for early leaf senescence. In our previous study, Els2, a single incomplete dominance gene, that caused early leaf senescence phenotype in the wheat mutant LF2099, had been mapped on the long arm of chromosome 2B. The objective of this study was to develop molecular markers tightly linked to the Els2 gene and construct a high-resolution map surrounding the Els2 gene. Three tightly linked single-nucleotide polymorphism (SNP) markers were obtained from the Illumina Wheat 90K iSelect SNP genotyping array and converted to Kompetitive allele-specific polymerase chain reaction (KASP) markers. To saturate the Els2 region, the Axiom® Wheat 660K SNP array was used to screen bulked extreme phenotype DNA pools, and 9 KASP markers were developed. For fine mapping of the Els2 gene, these KASP markers and previously identified polymorphic markers were analyzed in a large F2 population of the LF2099 × Chinese Spring cross. The Els2 gene was located in a 0.24-cM genetic region flanked by the KASP markers AX-111643885 and AX-111128667, which corresponded to a physical interval of 1.61 Mb in the Chinese Spring chromosome 2BL containing 27 predicted genes with high confidence. The study laid a foundation for a map-based clone of the Els2 gene controlling the mutation phenotype and revealing the molecular regulatory mechanism of wheat leaf senescence.
RESUMEN
Melatonin (N-acetyl-5-methoxytryptamine) is a pleiotropic signaling molecule that plays a crucial role in the regulation of various environmental stresses, including heat stress (HS). In this study, a 100 µM melatonin (MT) pretreatment followed by exposure to heat stress for different time periods was found to efficiently reduce oxidative stress by preventing the over-accumulation of hydrogen peroxide (H2O2), lowering the lipid peroxidation content (malondialdehyde (MDA) content), and increasing proline (Pro) biosynthesis. Moreover, the activities of antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), were increased substantially in MT-pretreated wheat seedlings. The presence of MT significantly improved the heat tolerance of wheat seedlings by modulating their antioxidant defense system, activating the ascorbate-glutathione (AsA-GSH) cycle comprising ascorbate peroxidase (APX), and increasing glutathione reductase (GR) activities. It also held the photosynthetic machinery stable by increasing the chlorophyll content. Enhancement in the endogenous MT contents was also observed in the MT+HS-treated plants. Furthermore, the expression of reactive oxygen species (ROS)-related genes TaSOD, TaPOD, and TaCAT, and anti-stress responsive genes, such as TaMYB80, TaWRKY26, and TaWRKY39, was also induced in MT-treated seedlings. Due to these notable changes, an improvement in stress resistance was observed in MT-treated seedlings compared with control. Taken together, our findings suggest that MT can play a key role in boosting the stress tolerance of plants by modulating the antioxidant defense system and regulating the transcription of stress-responsive genes.
RESUMEN
Wheat (Triticum aestivum L.) is one of the most important crops in the world. Chlorophyll plays a vital role in plant development and crop improvement and further determines the crop productivity to a certain extent. The biosynthesis of chlorophyll remains a complex metabolic process, and fundamental biochemical discoveries have resulted from studies of plant mutants with altered leaf color. In this study, we identified a chlorophyll-deficiency mutant, referred to as chli, from the wheat cultivar Shaannong33 that exhibited an obvious pale-green leaf phenotype at the seedling stage, with significantly decreased accumulation of chlorophyll and its precursors, protoporphyrin IX and Mg-protoporphyrin IX. Interestingly, a higher protoporphyrin IX to Mg-protoporphyrin IX ratio was observed in chli. Lipid biosynthesis in chli leaves and seeds was also affected, with the mutant displaying significantly reduced total lipid content relative to Shaanong33. Genetic analysis indicated that the pale-green leaf phenotype was controlled by a single pair of recessive nuclear genes. Furthermore, sequence alignment revealed a single-nucleotide mutation (G664A) in the gene TraesCS7A01G480700.1, which encodes subunit I of the Mg-chelatase in plants. This single-nucleotide mutation resulted in an amino acid substitution (D221N) in the highly conserved domain of subunit I. As a result, mutant protein Tachli-7A lost the ability to interact with the normal protein TaCHLI-7A, as assessed by yeast two-hybrid assay. Meanwhile, Tachli-7A could not recover the chlorophyll deficiency phenotype of the Arabidopsis thaliana SALK_050029 mutant. Furthermore, we found that in Shaannong33, the protoporphyrin IX to Mg-protoporphyrin IX ratio was growth state-dependent and insensitive to environmental change. Overall, the mutation in Tachli-7A impaired the function of Mg-chelatase and blocked the conversion of protoporphyrin IX to Mg- protoporphyrin IX. Based on our results, the chli mutant represents a potentially useful resource for better understanding chlorophyll and lipid biosynthetic pathways in common wheat.
RESUMEN
Lack of potassium in soil limits crop yield. Increasing yield and conserving potassium ore requires improving K use efficiency (KUE). Many genes influence KUE in plants, but it is not clear how these genes function in the field. We identified the V-type H+-pyrophosphatase gene EdVP1 from Elymus dahurica. Gene expression analysis showed that EdVP1 was induced by low potassium stress. Protein subcellular localization analysis demonstrated that EdVP1 localized on the plasma membrane. We overexpressed EdVP1 in two wheat varieties and conducted K tolerance experiments across years. Yield per plant, grain number per spike, plant height, and K uptake of four transgenic wheat lines increased significantly compared with WT; results from two consecutive years showed that EdVP1 significantly increased yield and KUE of transgenic wheat. Pot experiments showed that transgenic plants had significantly longer shoots and roots, and higher K accumulation in shoots and roots and H+-PPase activity in shoots than WT under low K. A fluidity assay of potassium ion in EdVP1 transgenic plant roots showed that potassium ion influx and H+ outflow in transgenic plants were higher than WT. Overexpressing EdVP1 significantly improved yield and KUE of transgenic wheat and was related to higher K uptake capacity in root.
Asunto(s)
Elymus/genética , Regulación de la Expresión Génica de las Plantas , Expresión Génica , Pirofosfatasa Inorgánica/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Potasio/metabolismo , Triticum/genética , Triticum/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/metabolismoRESUMEN
In Arabidopsis flowering pathway, MADS-box genes encode transcription factors, with their structures and functions highly conserved in many species. In our study, two MADS-box genes GhSOC1 and GhMADS42 (Gossypium hirsutum L.) were cloned from upland cotton CCRI36 and transformed into Arabidopsis. GhSOC1 was additionally transformed into upland cotton. Comparative analysis demonstrated sequence conservation between GhSOC1 and GhMADS42 and genes of other plant species. Tissue-specific expression analysis of GhSOC1 and GhMADS42 revealed spatiotemporal expression patterns involving high transcript levels in leaves, shoot apical buds, and flowers. In addition, overexpression of both GhSOC1 and GhMADS42 in Arabidopsis accelerated flowering, with GhMADS42 transgenic plants showing abnormal floral organ phenotypes. Overexpression of GhSOC1 in upland cotton also produced variations in floral organs. Furthermore, chromatin immunoprecipitation assay demonstrated that GhSOC1 could regulate GhMADS41 and GhMADS42, but not FLOWERING LOCUS T, by directly binding to the genes promoter. Finally, yeast two-hybrid and bimolecular fluorescence complementation approaches were undertaken to better understand the interaction of GhSOC1 and other MADS-box factors. These experiments showed that GhSOC1 can interact with APETALA1/FRUITFULL-like proteins in cotton.
Asunto(s)
Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Gossypium/genética , Proteínas de Plantas/genética , Regiones Promotoras Genéticas , Unión Proteica , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Flores/genética , Flores/metabolismo , Gossypium/metabolismo , Microscopía Fluorescente , Datos de Secuencia Molecular , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Protoplastos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de AminoácidoRESUMEN
Improving cotton yield is a major breeding goal for Chinese upland cotton. Lint percentage is an important yield component and a critical economic index for cotton cultivars, and raising the lint percentage has a close relationship to improving cotton lint yield. To investigate the genetic architecture of lint percentage, a diversity panel consisting of 355 upland cotton accessions was grown, and the lint percentage was measured in four different environments. Genotyping was performed with specific-locus amplified fragment sequencing (SLAF-seq). Twelve single-nucleotide polymorphisms (SNPs) associated with lint percentage were detected via a genome-wide association study (GWAS), in which five SNP loci distributed on chromosomes At3 (A02) and At4 (A08) and contained two major-effect QTLs, which were detected in the best linear unbiased predictions (BLUPs) and in more than three environments simultaneously. Furthermore, favorable haplotypes (FHs) of two major-effect QTLs and 47 putative candidate genes in the two linkage disequilibrium (LD) blocks of these associated loci were identified. The expression levels of these putative candidate genes were estimated using RNA-seq data from ten upland cotton tissues. We found that Gh_A02G1268 was very highly expressed during the early fiber development stage, whereas the gene was poorly expressed in the seed. These results implied that Gh_A02G1268 may determine the lint percentage by regulating seed and fiber development. The favorable QTL alleles and candidate genes for lint percentage identified in this study will have high potential for improving lint yield in future Chinese cotton breeding programs.
RESUMEN
Fiber quality is one of the most important agronomic traits of cotton, and understanding the genetic basis of its target traits will accelerate improvements to cotton fiber quality. In this study, a panel comprising 355 upland cotton accessions was used to perform genome-wide association studies (GWASs) of five fiber quality traits in four environments. A total of 16, 10 and 7 SNPs were associated with fiber length (FL), fiber strength (FS) and fiber uniformity (FU), respectively, based on the mixed linear model (MLM). Most importantly, two major genomic regions (MGR1 and MGR2) on chromosome Dt7 and four potential candidate genes for FL were identified. Analyzing the geographical distribution of favorable haplotypes (FHs) among these lines revealed that two favorable haplotype frequencies (FHFs) were higher in accessions from low-latitude regions than in accessions from high-latitude regions. However, the genetic diversity of lines from the low-latitude regions was lower than the diversity of lines from the high-latitude regions in China. Furthermore, the FHFs differed among cultivars developed during different breeding periods. These results indicate that FHs have undergone artificial selection during upland cotton breeding in recent decades in China and provide a foundation for the further improvement of fiber quality traits.