Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 175(5): 1185-1197.e22, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30415837

RESUMEN

We report genome-wide ancient DNA from 49 individuals forming four parallel time transects in Belize, Brazil, the Central Andes, and the Southern Cone, each dating to at least ∼9,000 years ago. The common ancestral population radiated rapidly from just one of the two early branches that contributed to Native Americans today. We document two previously unappreciated streams of gene flow between North and South America. One affected the Central Andes by ∼4,200 years ago, while the other explains an affinity between the oldest North American genome associated with the Clovis culture and the oldest Central and South Americans from Chile, Brazil, and Belize. However, this was not the primary source for later South Americans, as the other ancient individuals derive from lineages without specific affinity to the Clovis-associated genome, suggesting a population replacement that began at least 9,000 years ago and was followed by substantial population continuity in multiple regions.


Asunto(s)
Genética de Población/historia , Genoma Humano , América Central , ADN Antiguo/análisis , ADN Mitocondrial/genética , Flujo Génico , Historia Antigua , Humanos , Modelos Teóricos , América del Sur
2.
Nature ; 591(7850): 413-419, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33618348

RESUMEN

The deep population history of East Asia remains poorly understood owing to a lack of ancient DNA data and sparse sampling of present-day people1,2. Here we report genome-wide data from 166 East Asian individuals dating to between 6000 BC and AD 1000 and 46 present-day groups. Hunter-gatherers from Japan, the Amur River Basin, and people of Neolithic and Iron Age Taiwan and the Tibetan Plateau are linked by a deeply splitting lineage that probably reflects a coastal migration during the Late Pleistocene epoch. We also follow expansions during the subsequent Holocene epoch from four regions. First, hunter-gatherers from Mongolia and the Amur River Basin have ancestry shared by individuals who speak Mongolic and Tungusic languages, but do not carry ancestry characteristic of farmers from the West Liao River region (around 3000 BC), which contradicts theories that the expansion of these farmers spread the Mongolic and Tungusic proto-languages. Second, farmers from the Yellow River Basin (around 3000 BC) probably spread Sino-Tibetan languages, as their ancestry dispersed both to Tibet-where it forms approximately 84% of the gene pool in some groups-and to the Central Plain, where it has contributed around 59-84% to modern Han Chinese groups. Third, people from Taiwan from around 1300 BC to AD 800 derived approximately 75% of their ancestry from a lineage that is widespread in modern individuals who speak Austronesian, Tai-Kadai and Austroasiatic languages, and that we hypothesize derives from farmers of the Yangtze River Valley. Ancient people from Taiwan also derived about 25% of their ancestry from a northern lineage that is related to, but different from, farmers of the Yellow River Basin, which suggests an additional north-to-south expansion. Fourth, ancestry from Yamnaya Steppe pastoralists arrived in western Mongolia after around 3000 BC but was displaced by previously established lineages even while it persisted in western China, as would be expected if this ancestry was associated with the spread of proto-Tocharian Indo-European languages. Two later gene flows affected western Mongolia: migrants after around 2000 BC with Yamnaya and European farmer ancestry, and episodic influences of later groups with ancestry from Turan.


Asunto(s)
Genoma Humano/genética , Genómica , Migración Humana/historia , China , Producción de Cultivos/historia , Femenino , Haplotipos/genética , Historia Antigua , Humanos , Japón , Lenguaje/historia , Masculino , Mongolia , Nepal , Oryza , Polimorfismo de Nucleótido Simple/genética , Siberia , Taiwán
3.
Mol Biol Evol ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38885310

RESUMEN

Large-scale genomic projects and ancient DNA innovations have ushered in a new paradigm for exploring human evolutionary history. However, the genetic legacy of spatiotemporally diverse ancient Eurasians within Chinese paternal lineages remains unresolved. Here, we report an integrated Y-chromosome genomic database encompassing 15,563 individuals from both modern and ancient Eurasians, including 919 newly reported individuals, to investigate Chinese paternal genomic diversity. The high-resolution, time-stamped phylogeny reveals multiple diversification events and extensive expansions in the early and middle Neolithic. We identify four major ancient population movements, each associated with technological innovations, that have shaped the Chinese paternal landscape. Firstly, the expansion of early East Asians and millet farmers from the Yellow River Basin, predominantly carrying O2/D subclades, significantly influenced the formation of the Sino-Tibetan people and facilitated the permanent settlement of the Tibetan Plateau. Secondly, the dispersal of rice farmers from the Yangtze River Valley, carrying O1 and certain O2 sublineages, reshapes the genetic makeup of southern Han Chinese, as well as the Tai-Kadai, Austronesian, Hmong-Mien, and Austroasiatic people. Thirdly, Neolithic Siberian Q/C paternal lineages originated and proliferated among hunter-gatherers on the Mongolian Plateau and the Amur River Basin, leaving a significant imprint on the gene pools of northern China. Fourthly, J/G/R paternal lineages derived from western Eurasia, which were initially spread by Yamnaya-related steppe pastoralists, maintain their presence primarily in northwestern China. Overall, our research provides comprehensive genetic evidence elucidating the significant impact of interactions with culturally distinct ancient Eurasians on the patterns of paternal diversity in modern Chinese populations.

4.
BMC Biol ; 22(1): 55, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448908

RESUMEN

BACKGROUND: The underrepresentation of human genomic resources from Southern Chinese populations limited their health equality in the precision medicine era and complete understanding of their genetic formation, admixture, and adaptive features. Besides, linguistical and genetic evidence supported the controversial hypothesis of their origin processes. One hotspot case was from the Chinese Guangxi Pinghua Han people (GPH), whose language was significantly similar to Southern Chinese dialects but whose uniparental gene pool was phylogenetically associated with the indigenous Tai-Kadai (TK) people. Here, we analyzed genome-wide SNP data in 619 people from four language families and 56 geographically different populations, in which 261 people from 21 geographically distinct populations were first reported here. RESULTS: We identified significant population stratification among ethnolinguistically diverse Guangxi populations, suggesting their differentiated genetic origin and admixture processes. GPH shared more alleles related to Zhuang than Southern Han Chinese but received more northern ancestry relative to Zhuang. Admixture models and estimates of genetic distances showed that GPH had a close genetic relationship with geographically close TK compared to Northern Han Chinese, supporting their admixture origin hypothesis. Further admixture time and demographic history reconstruction supported GPH was formed via admixture between Northern Han Chinese and Southern TK people. We identified robust signatures associated with lipid metabolisms, such as fatty acid desaturases (FADS) and medically relevant loci associated with Mendelian disorder (GJB2) and complex diseases. We also explored the shared and unique selection signatures of ethnically different but linguistically related Guangxi lineages and found some shared signals related to immune and malaria resistance. CONCLUSIONS: Our genetic analysis illuminated the language-related fine-scale genetic structure and provided robust genetic evidence to support the admixture hypothesis that can explain the pattern of observed genetic diversity and formation of GPH. This work presented one comprehensive analysis focused on the population history and demographical adaptative process, which provided genetic evidence for personal health management and disease risk prediction models from Guangxi people. Further large-scale whole-genome sequencing projects would provide the entire landscape of southern Chinese genomic diversity and their contributions to human health and disease traits.


Asunto(s)
Aclimatación , Genómica , Humanos , China , Alelos , Lenguaje
5.
BMC Genomics ; 24(1): 691, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37978341

RESUMEN

The Hui people are the second-largest ethnic minority in China, and they are distributed throughout the country. A previous study explored the paternal genetic structure of the Hui population in nine different regions of China, but it overlooked the Liaoning province. In this study, we examined the paternal genetic makeup and forensic traits of the Hui population in Liaoning province by analyzing 157 Y-chromosome single nucleotide polymorphisms (Y-SNPs) and 26 short tandem repeats (Y-STRs). We successfully genotyped 282 unrelated male individuals from the Hui population of Liaoning province using the SNaPshot® single base extension assay and Goldeneye™ Y26 system kit (PEOPLESPOT R&D, Beijing, China). The results revealed high haplotypic diversity (0.9998) and identified 46 terminal haplogroups for the Hui population. Additional analyses, such as heat maps, principal component analysis (PCA), genetic distance (FST), Multidimensional scaling (MDS) analysis, and median-joining network (MJ) analysis, showed that the Hui population could be classified into three groups: Northwest Hui populations (NWH), including Liaoning, Xinjiang, Qinghai, Gansu, Ningxia, Shaanxi, and Henan; Hui populations from Sichuan and Shandong (SSH); and Yunnan Hui populations (YNH). Pairwise genetic distance (Rst) comparisons with other Chinese populations revealed that the Hui population displayed genetic affinity with the Han population. The comprehensive understanding of the Hui population in Liaoning province, explored by Y-SNPs and Y-STRs, can be utilized to interpret their genetic structure and enhance the accuracy of forensic databases.


Asunto(s)
Etnicidad , Genética de Población , Humanos , Masculino , Etnicidad/genética , Grupos Minoritarios , Cromosomas Humanos Y/genética , China , Repeticiones de Microsatélite , Haplotipos
6.
BMC Genomics ; 24(1): 317, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37308851

RESUMEN

BACKGROUND: Yungui Plateau in Southwest China is characterized by multi-language and multi-ethnic communities and is one of the regions with the wealthiest ethnolinguistic, cultural and genetic diversity in East Asia. There are numerous Tai-Kadai (TK)-speaking populations, but their detailed evolutionary history and biological adaptations are still unclear. RESULTS: Here, we genotyped genome-wide SNP data of 77 unrelated TK-speaking Zhuang and Dong individuals from the Yungui Plateau and explored their detailed admixture history and adaptive features using clustering patterns, allele frequency differentiation and sharing haplotype patterns. TK-speaking Zhuang and Dong people in Guizhou are closely related to geographically close TK and Hmong-Mien (HM)-speaking populations. Besides, we identified that Guizhou TK-speaking people have a close genetic relationship with Austronesian (AN)-speaking Atayal and Paiwan people, which is supported by the common origin of the ancient Baiyue tribe. We additionally found subtle genetic differences among the newly studied TK people and previously reported Dais via the fine-scale genetic substructure analysis based on the shared haplotype chunks. Finally, we identified specific selection candidate signatures associated with several essential human immune systems and neurological disorders, which could provide evolutionary evidence for the allele frequency distribution pattern of genetic risk loci. CONCLUSIONS: Our comprehensive genetic characterization of TK people suggested the strong genetic affinity within TK groups and extensive gene flow with geographically close HM and Han people. We also provided genetic evidence that supported the common origin hypothesis of TK and AN people. The best-fitted admixture models further suggested that ancestral sources from northern millet farmers and southern inland and coastal people contributed to the formation of the gene pool of the Zhuang and Dong people.


Asunto(s)
Adaptación Biológica , Pueblo Asiatico , Humanos , Pueblo Asiatico/genética , Evolución Biológica , China , Análisis por Conglomerados , Genética de Población
7.
BMC Genomics ; 24(1): 672, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37936086

RESUMEN

Sino-Tibetan is the most prominent language family in East Asia. Previous genetic studies mainly focused on the Tibetan and Han Chinese populations. However, due to the sparse sampling, the genetic structure and admixture history of Tibeto-Burman-speaking populations in the low-altitude region of Southwest China still need to be clarified. We collected DNA from 157 individuals from four Tibeto-Burman-speaking groups from the Guizhou province in Southwest China. We genotyped the samples at about 700,000 genome-wide single nucleotide polymorphisms. Our results indicate that the genetic variation of the four Tibeto-Burman-speaking groups in Guizhou is at the intermediate position in the modern Tibetan-Tai-Kadai/Austronesian genetic cline. This suggests that the formation of Tibetan-Burman groups involved a large-scale gene flow from lowland southern Chinese. The southern ancestry could be further modelled as deriving from Vietnam's Late Neolithic-related inland Southeast Asia agricultural populations and Taiwan's Iron Age-related coastal rice-farming populations. Compared to the Tibeto-Burman speakers in the Tibetan-Yi Corridor reported previously, the Tibeto-Burman groups in the Guizhou region received additional gene flow from the southeast coastal area of China. We show a difference between the genetic profiles of the Tibeto-Burman speakers of the Tibetan-Yi Corridor and the Guizhou province. Vast mountain ranges and rivers in Southwest China may have decelerated the westward expansion of the southeast coastal East Asians. Our results demonstrate the complex genetic profile in the Guizhou region in Southwest China and support the multiple waves of human migration in the southern area of East Asia.


Asunto(s)
Pueblo Asiatico , Flujo Génico , Humanos , China , Pueblo Asiatico/genética , Polimorfismo de Nucleótido Simple , Genómica , Genética de Población
8.
Chemistry ; 29(11): e202203106, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36396617

RESUMEN

In this work, Ti3 Al1-x Six C2 (x=0, 0.2, 0.4, and 0.6) with Al/Si solid solution structure are synthesized, and the effects of Si on their oxidation behaviors at 1000 °C are evaluated. The addition of Si not only contributes to the formation of Ti5 Si3 impurity but also affects the composition of the oxide scale. Particularly, the incorporation of Si in the TiO2 lattice is demonstrated, which alters the formation energy of the (110) plane in TiO2 , thus leading to the preferential growth of Si-doped TiO2 to dendritic congeries. Moreover, the Si addition is believed to affect mass transportation during the oxidation process, which accelerates the formation of a continuous Al2 O3 layer in the oxide scale. With an optimized Si content, the oxidation of Ti3 Al1-x Six C2 is restrained. However, with excess Si content, the continuity of the resulting Al2 O3 layer is destroyed, thus the oxidation rate rises again.

9.
Ann Hum Biol ; 50(1): 161-171, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36809229

RESUMEN

BACKGROUND: The fine-scale genetic profiles and population history of Manchus and Koreans remain unclear. AIM: To infer a fine-scale genetic structure and admixture of Manchu and Korean populations. SUBJECTS AND METHODS: We collected and genotyped 16 Manchus from Liaoning and 18 Koreans from Jilin province with about 700K genome-wide SNPs. We analysed the data using principal component analysis (PCA), ADMIXTURE, Fst, TreeMix, f-statistics, qpWave, and qpAdm. RESULTS: Manchus and Koreans showed a genetic affinity with northern East Asians. Chinese Koreans showed a long-term genetic continuity with Bronze Age populations from the West Liao River and had a strong affinity with Koreans in South Korea and Japan. Manchus had a different genetic profile compared with other Tungusic populations since the Manchus received additional genetic influence from the southern Chinese but didn't have West Eurasian-related admixture. CONCLUSIONS: The genetic formation of Manchus involving southern Chinese was consistent with the extensive interactions between Manchus and populations from central and southern China. The large-scale genetic continuity between ancient West Liao River farmers and Koreans highlighted the role farming expansion played in the peopling of the Korean Peninsula.


Asunto(s)
Pueblo Asiatico , Pueblos del Este de Asia , Genética de Población , Humanos , Pueblo Asiatico/genética , China , Pueblos del Este de Asia/genética , Genotipo
10.
Forensic Sci Med Pathol ; 19(3): 293-302, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-35994154

RESUMEN

Variation in facial hair is one of the most conspicuous features of facial appearance, particularly in South Asia and Middle East countries. A genome-wide association study in Latin Americans has identified multiple genetic variants at distinct loci being associated with facial hair traits including eyebrow thickness, beard thickness, and monobrow. In this pilot study, we have evaluated 16 SNPs associated with facial hair traits in 58 male individuals from the Punjabi population of Pakistan. In our sample, rs365060 in EDAR and rs12597422 in FTO showed significant association with monobrow, rs6684877 in MACF1 showed significant association with eyebrow thickness, and two SNPs in LOC105379031 (rs9654415 and rs7702331) showed significant association with beard thickness. Our results also suggest that genetic association may vary between ethnic groups and geographic regions. Although more data are needed to validate our results, our findings are of value in forensic molecular photofitting research in Pakistan.


Asunto(s)
Etnicidad , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Pakistán , Proyectos Piloto , Etnicidad/genética , Polimorfismo de Nucleótido Simple , Cabello , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética
11.
BMC Genomics ; 23(1): 788, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36451116

RESUMEN

17 Y-chromosomal STRs which are part of the Yfiler Amplification Kit were investigated in 493 unrelated Pakistani individuals belonging to the Punjabi, Sindhi, Baloch, and Pathan ethnic groups. We have assessed the forensic parameters and population genetic structure for each group. Among the 493 unrelated individuals from four ethnic groups (128 Baloch, 122 Pathan, 108 Punjabi, and 135 Sindhi), 82 haplotypes were observed with haplotype diversity (HD) of 0.9906 in Baloch, 102 haplotypes with HD value of 0.9957 in Pathans, 80 haplotypes with HD value of 0.9924 in Punjabi, and 105 haplotypes with HD value of 0.9945 in the Sindhi population. The overall gene diversity for Baloch, Pathan, Punjabi, and Sindhi populations was 0.6367, 0.6479, 0.6657, and 0.6112, respectively. The results had shown us that Pakistani populations do not have a unique set of genes but share the genetic affinity with regional (Central Asia and Northern India) populations. The observed low gene diversity (heterozygosity) values may be because of endogamy trends and this observation is equally supported by the results of forensic parameters which are mostly static across 4 combinations (minimal STRs, extended 11 Y-STRs, Powerplex 12 Y System, and Yfiler 17 Y-STRs) of STRs in these four populations.


Asunto(s)
Pueblo Asiatico , Etnicidad , Humanos , Etnicidad/genética , Pakistán , Haplotipos , Pueblo Asiatico/genética , Variación Genética
12.
Mol Genet Genomics ; 296(3): 631-651, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33650010

RESUMEN

Trans-Eurasian cultural and genetic exchanges have significantly influenced the demographic dynamics of Eurasian populations. The Hexi Corridor, located along the southeastern edge of the Eurasian steppe, served as an important passage of the ancient Silk Road in Northwest China and intensified the transcontinental exchange and interaction between populations on the Central Plain and in Western Eurasia. Historical and archeological records indicate that the Western Eurasian cultural elements were largely brought into North China via this geographical corridor, but there is debate on the extent to which the spread of barley/wheat agriculture into North China and subsequent Bronze Age cultural and technological mixture/shifts were achieved by the movement of people or dissemination of ideas. Here, we presented higher-resolution genome-wide autosomal and uniparental Y/mtDNA SNP or STR data for 599 northwestern Han Chinese individuals and conducted 2 different comprehensive genetic studies among Neolithic-to-present-day Eurasians. Genetic studies based on lower-resolution STR markers via PCA, STRUCTURE, and phylogenetic trees showed that northwestern Han Chinese individuals had increased genetic homogeneity relative to northern Mongolic/Turkic/Tungusic speakers and Tibeto-Burman groups. The genomic signature constructed based on modern/ancient DNA further illustrated that the primary ancestry of the northwestern Han was derived from northern millet farmer ancestors, which was consistent with the hypothesis of Han origin in North China and more recent northwestward population expansion. This was subsequently confirmed via excess shared derived alleles in f3/f4 statistical analyses and by more northern East Asian-related ancestry in the qpAdm/qpGraph models. Interestingly, we identified one western Eurasian admixture signature that was present in northwestern Han but absent from southern Han, with an admixture time dated to approximately 1000 CE (Tang and Song dynasties). Generally, we provided supporting evidence that historic Trans-Eurasian communication was primarily maintained through population movement, not simply cultural diffusion. The observed population dynamics in northwestern Han Chinese not only support the North China origin hypothesis but also reflect the multiple sources of the genetic diversity observed in this population.


Asunto(s)
Pueblo Asiatico/genética , Genoma/genética , China , Cromosomas Humanos Y/genética , ADN Antiguo , ADN Mitocondrial/genética , Etnicidad/genética , Genética de Población/métodos , Estudio de Asociación del Genoma Completo/métodos , Migración Humana , Humanos , Filogenia , Polimorfismo de Nucleótido Simple/genética
13.
Int J Legal Med ; 135(5): 1777-1784, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33818632

RESUMEN

The Hazara population across Durand line has experienced extensive interaction with Central Asian and East Asian populations. Hazara individuals have typical Mongolian facial appearances and they called themselves descendants of Genghis Khan's army. The people who speak the Balochi language are called Baloch. Previously, a worldwide analysis of Y-chromosomal haplotype diversity for rapidly mutating (RM) Y-STRs and with PowerPlex Y23 System (Promega Corporation Madison, USA) kit was created with collaborative efforts, but Baloch and Hazara population from Pakistan and Hazara population from Afghanistan were missing. In the current study, Yfiler Plus PCR Amplification Kit loci were examined in 260 unrelated Hazara individuals from Afghanistan, 153 Hazara individuals, and 111 Balochi individuals from Baluchistan Pakistan. For the Hazara population from Afghanistan and Pakistan overall, 380 different haplotypes were observed on these 27 Y-STR loci, gene diversities ranged from 0.51288 (DYS389I) to 0.9257 (DYF387S1), and haplotype diversity was 0.9992. For the Baloch population, every individual was unique at 27 Y-STR loci; gene diversity ranged from 0.5718 (DYS460) to 0.9371(DYF387S1). Twelve haplotypes were shared between 178 individuals, while only two haplotypes among these twelve were shared between 87 individuals in Hazara populations. Rst and Fst pairwise genetic distance analyses, multidimensional scaling plot, neighbor-joining tree, linear discriminatory analysis, and median-joining network were performed, which shed light on the history of Hazara and Baloch populations. The results of our study showed that the Yfiler Plus PCR Amplification Kit marker set provided substantially stronger discriminatory power in the Baloch population of Pakistan and the Hazara population across the Durand line.


Asunto(s)
Cromosomas Humanos Y , Dermatoglifia del ADN/métodos , Etnicidad/genética , Haplotipos , Repeticiones de Microsatélite , Afganistán/etnología , Genética de Población , Humanos , Masculino , Pakistán/etnología
14.
Hum Biol ; 93(3): 179-199, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-37733615

RESUMEN

As the dominant indigenous minority in southern China, Hmong-Mien-speaking Miao people were thought to be the descendants of Neolithic Yangtze rice farmers. However, the fine-scale population structure and genetic profile of the Miao populations remain unclear due to the limited Miao samples from southern China and Southeast Asia. We genotyped 19 individuals from the two largest Miao tribes in Guizhou Province (Southwest China) via SNP chips and co-analyzed the data with published modern and ancient East Asians. The Guizhou Miao displayed a closer genomic affinity with present-day and Neolithic to Iron Age southern East Asians (SEAs) than with most northern East Asians (NEAs). The genetic substructure within Miao groups was driven by different levels of genetic interaction with other ethnolinguistic groups: Hunan Miao (Central China) harbored higher proportions of NEA-related ancestry; Guizhou Miao (Southwest China) and Vietnam Miao (mainland Southeast Asia) received additional gene flow mainly from surrounding groups with Tai-Kadai-related ancestry. There were also more complex admixture events in the newly studied groups between Guizhou Xijiang Miao and surrounding populations compared with Guizhou Congjiang Miao. The qpAdm model further demonstrated that the primary ancestry of Hunan Miao, Guizhou Miao studied here, and Vietnam Miao derived from ancient SEA-related ancestry (represented by coastal early Neolithic SEA Liangdao2), with the additional gene flow from ancient NEA-related ancestry (represented by spatiotemporally inland Yellow River farmers), with slightly different proportions. Our genomic evidence reveals the complex and distinct demographic history of different Miao tribes.


Asunto(s)
Pueblo Asiatico , Perfil Genético , Humanos , Pueblo Asiatico/genética , Genotipo , Pueblos del Este de Asia , China
15.
Am J Phys Anthropol ; 174(4): 686-700, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33555039

RESUMEN

OBJECTIVES: The aim of this research was to explore the origin, diversification, and demographic history of O1a-M119 over the past 10,000 years, as well as its role during the formation of East Asian and Southeast Asian populations, particularly the Han, Tai-Kadai-speaking, and Austronesian-speaking populations. MATERIALS AND METHODS: Y-chromosome sequences (n = 141) of the O1a-M119 lineage, including 17 newly generated in this study, were used to reconstruct a revised phylogenetic tree with age estimates, and identify sub-lineages. The geographic distribution of 12 O1a-M119 sub-lineages was summarized, based on 7325 O1a-M119 individuals identified among 60,009 Chinese males. RESULTS: A revised phylogenetic tree, age estimation, and distribution maps indicated continuous expansion of haplogroup O1a-M119 over the past 10,000 years, and differences in demographic history across geographic regions. We propose several sub-lineages of O1a-M119 as founding paternal lineages of Han, Tai-Kadai-speaking, and Austronesian-speaking populations. The sharing of several young O1a-M119 sub-lineages with expansion times less than 6000 years between these three population groups supports a partial common ancestry for them in the Neolithic Age; however, the paternal genetic divergence pattern is much more complex than previous hypotheses based on ethnology, archeology, and linguistics. DISCUSSION: Our analyses contribute to a better understanding of the demographic history of O1a-M119 sub-lineages over the past 10,000 years during the emergence of Han, Austronesians, Tai-Kadai-speaking populations. The data described in this study will assist in understanding of the history of Han, Tai-Kadai-speaking, and Austronesian-speaking populations from ethnology, archeology, and linguistic perspectives in the future.


Asunto(s)
Pueblo Asiatico/genética , Cromosomas Humanos Y/genética , Etnicidad/genética , Genética de Población/métodos , Haplotipos/genética , Antropología Física , Pueblo Asiatico/clasificación , China , Etnicidad/clasificación , Humanos , Masculino
16.
Ann Hum Biol ; 48(5): 418-429, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34763584

RESUMEN

BACKGROUND: Hmong-Mien speaking Miao, also called Hmong, is the sixth largest ethnic group in mainland China. However, the fine-scale genetic profiles and population history of Miao populations in southwest China, especially in Guizhou province, remain uncharacterised due to a scarcity of samples of genome-wide data from different tribes. AIM: To further investigate the population substructure and admixture history of the Guizhou Miao minority. SUBJECTS AND METHODS: We collected 29 samples from three Miao tribes of Guizhou province in southwest China and genotyped about 700,000 genome-wide SNPs of each sample. We analysed newly generated data in together with published modern/ancient East Asian populations datasets via a series of population genetic methods, including principal component analysis (PCA), ADMIXTURE, Fst, TreeMix, f-statistics, qpWave, and qpAdm. RESULTS: PCA and ADMIXTURE results showed that the three studied Guizhou Miao groups consistently fell on the Hmong-Mien-related genetic cline and were relatively genetically homogeneous, displaying a genetic affinity with neighbouring Tai-Kadai speaking populations such as Dong. These results were further confirmed by the observed genetic clade in Fst, TreeMix, outgroup-f3-statistics, and f4-statistics. Furthermore, f4-based allele sharing patterns illustrated that compared with Hunan Miao in central China, Guizhou Miao shared more alleles with Hmong-Mien-speaking Vietnam Hmong and Tai-Kadai-speaking CoLao, Dong, while exhibiting less northeast Asian-related ancestry. Admixture-f3 and f4-statistics revealed the North-South admixture pattern for the studied Guizhou Miao. A qpAdm-based two-way admixture model further revealed that the studied Guizhou Miao harboured 44%-55.4% indigenous Austronesian-speaking Atayal-related ancestry and 44.6%-56% Late Neolithic Yellow River farmer-related ancestry. CONCLUSIONS: The population structure within Hmong-Mien-related populations showed a geographic correlation. Hmong-Mien speaking Hunan Miao, Guizhou Miao, and Vietnam Hmong presented close genetic relationships although they dwelt in different regions, suggesting the preservation of the original Hmong-related genetic diversity. The results based on genome-wide SNPs data generally matched the migration history for the Miao population. Our study contributes to a better knowledge of Miao populations and the population structure in southwest China.


Asunto(s)
Pueblo Asiatico , Etnicidad , Alelos , Pueblo Asiatico/genética , China , Etnicidad/genética , Genética de Población , Genotipo , Humanos , Polimorfismo de Nucleótido Simple
17.
Ann Hum Biol ; 48(1): 49-55, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33191788

RESUMEN

BACKGROUND: In recent decades, considerable attention has been paid to exploring the population genetic characteristics of Han Chinese, mainly documenting a north-south genetic substructure. However, the central Han Chinese have been largely underrepresented in previous studies. AIM: To infer a comprehensive understanding of the homogenisation process and population history of Han Chinese. SUBJECTS AND METHODS: We collected samples from 122 Han Chinese from seven counties of Hubei province in central China and genotyped 534,000 genome-wide SNPs. We compared Hubei Han with both ancient and present-day Eurasian populations using Principal Component Analysis, ADMIXTURE, f statistics, qpWave and qpAdm. RESULTS: We observed Hubei Han Chinese are at a genetically intermediate position on the north-south Han Chinese cline. We have not detected any significant genetic substructure in the studied groups from seven different counties. Hubei Han show significant evidence of genetic admixture deriving about 63% of ancestry from Tai-Kadai or Austronesian-speaking southern indigenous groups and 37% from Tungusic or Mongolic related northern populations. CONCLUSIONS: The formation of Han Chinese has involved extensive admixture with Tai-Kadai or Austronesian-speaking populations in the south and Tungusic or Mongolic speaking populations in the north. The convenient transportation and central location of Hubei make it the key region for the homogenisation of Han Chinese.


Asunto(s)
Etnicidad/genética , Genotipo , Migración Humana , Polimorfismo de Nucleótido Simple , China , Humanos , Análisis de Componente Principal
18.
Mol Genet Genomics ; 295(1): 221-231, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31641857

RESUMEN

The Xinjiang Uyghur Autonomous Region of China (XUARC) with 47 ethnic groups is a very colorful ethnic region of China, harboring abundant genetic and cultural diversity. The Kazakhs are the third largest ethnic group (7.02%) after Uyghur (46.42%) and Han (38.99%) in Xinjiang, but their genetic diversity and forensic characterization are poorly understood. In the current study, we genotyped 15 autosomal short tandem repeat (STR) loci and ten Y-STRs in 889 individuals (659 male and 230 female) collected from Kazak population of the Ili Kazak Autonomous Prefecture using AGCU Expressmarker 16 and 10Y-STR Kit (EX16 + 10Y). For autosomal STRs, we observed a total of 174 different alleles ranging from 6 to 34.2 repeat units and FGA showed the greatest power of discrimination (20 alleles) in Ili Kazakh population. We have not observed departures from Hardy-Weinberg equilibrium (HWE) after sequential Bonferroni correction and only found a minimal departure from linkage equilibrium (LE) for a very small number of pairwise combinations of loci. The combined power of exclusion (CPE) was 0.99999998395 and combined power of discrimination (CPD) was 99.999999999999999798%. For Y-STRs, we observed a total of 496 different haplotypes in these ten Y-STR loci. The gene diversities ranged from 0.5023 (DYS391) to 0.8357 (DYS385a/b). The overall haplotype diversity (GD) was 0.9985 with random matching probability (RMP) of 0.0015. The results of population genetic analysis based on both autosomal and Y-chromosome STRs demonstrated that the genetic affinity among populations is generally consistent with ethnic, linguistic, and continental geographical classifications.


Asunto(s)
Pueblo Asiatico/genética , Cromosomas/genética , Polimorfismo Genético/genética , Alelos , Femenino , Frecuencia de los Genes/genética , Pruebas Genéticas/métodos , Genética de Población/métodos , Haplotipos/genética , Humanos , Masculino , Repeticiones de Microsatélite/genética , Filogenia
19.
J Hum Genet ; 65(9): 797-803, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32313196

RESUMEN

Aksay Kazakhs are the easternmost branch of Kazakhs, residing in Jiuquan city, the forefront of the ancient Silk Road. However, the genetic diversity of Aksay Kazakhs and its relationships with other Kazakhs still lack attention. To clarify this issue, we analyzed the non-recombining portion of the Y-chromosome from 93 Aksay Kazakhs samples, using a high-resolution analysis of 106 biallelic markers and 17 STRs. The lowest haplogroup diversity (0.38) was observed in Aksay Kazakhs among all studied Kazakh populations. The social and cultural traditions of the Kazakhs shaped their current pattern of genetic variation. Aksay Kazakhs tended to migrate with clans and had limited paternal admixture with neighboring populations. Aksay Kazakhs had the highest frequency (80%) of haplogroup C2b1a3a1-F3796 (previous C3*-Star Cluster) among the investigated Eurasian steppe populations, which was now seen as the genetic marker of Kerei clan. Furthermore, NETWORK analysis indicated that Aksay Kazakhs originated from sub-clan Kerei-Abakh in Kazakhstan with DYS448 = 23. TMRCA estimates of three recent descent clusters detected in C2*-M217 (xM48) network, one of which incorporate nearly all of the C2b1a3a1-F3796 Aksay Kazakhs samples, gave the age range of 976-1405 YA for DC1, 1059-1314 YA for DC2, and 1139-1317 YA for DC3, respectively; this is coherent with the 7th to the 11th centuries Altaic-speaking pastoral nomadic population expansion.


Asunto(s)
Pueblo Asiatico/genética , Cromosomas Humanos Y/genética , Etnicidad/genética , China , Marcadores Genéticos , Variación Genética , Genética de Población , Haplotipos , Humanos , Masculino , Filogenia , Polimorfismo de Nucleótido Simple
20.
Int J Legal Med ; 134(6): 2063-2065, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32472181

RESUMEN

We analyzed haplotypes for 36 Y chromosomal STRs (Y-STRs), including 27 Yfiler Plus loci and 9 additional STRs (DYS549, DYS643, DYS508, DYS447, DYS596, DYS444, DYS557, and DYS527a/b) in 2018 unrelated Chinese Han individuals from Anhui Province using DNATyperTM 36Y Kit. Phylogenetic analysis was performed to determine the genetic relationship of the Anhui Han population with other neighboring and/or linguistically close populations.


Asunto(s)
Pueblo Asiatico/etnología , Pueblo Asiatico/genética , Cromosomas Humanos Y , Dermatoglifia del ADN , Haplotipos , Repeticiones de Microsatélite , Filogenia , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA