Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 607
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 589(7843): 586-590, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33299183

RESUMEN

Legumes, unlike other plants, have the ability to establish symbiosis with nitrogen-fixing rhizobia. It has been theorized that a unique property of legume root cortical cells enabled the initial establishment of rhizobial symbiosis1-3. Here we show that a SHORTROOT-SCARECROW (SHR-SCR) stem cell program in cortical cells of the legume Medicago truncatula specifies their distinct fate. Regulatory elements drive the cortical expression of SCR, and stele-expressed SHR protein accumulates in cortical cells of M. truncatula but not Arabidopsis thaliana. The cortical SHR-SCR network is conserved across legume species, responds to rhizobial signals, and initiates legume-specific cortical cell division for de novo nodule organogenesis and accommodation of rhizobia. Ectopic activation of SHR and SCR in legumes is sufficient to induce root cortical cell division. Our work suggests that acquisition of the cortical SHR-SCR module enabled cell division coupled to rhizobial infection in legumes. We propose that this event was central to the evolution of rhizobial endosymbiosis.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Medicago truncatula/citología , Medicago truncatula/metabolismo , Proteínas de Plantas/metabolismo , Nodulación de la Raíz de la Planta , Arabidopsis/citología , Arabidopsis/metabolismo , División Celular , Citocininas/metabolismo , Evolución Molecular , Medicago truncatula/embriología , Proteínas de Plantas/genética , Raíces de Plantas/citología , Raíces de Plantas/metabolismo , Regiones Promotoras Genéticas/genética , Rhizobium/metabolismo , Transducción de Señal , Simbiosis/genética
2.
Plant Physiol ; 195(2): 958-969, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38447074

RESUMEN

The fruit neck is an important agronomic trait of cucumber (Cucumis sativus). However, the underlying genes and regulatory mechanisms involved in fruit neck development are poorly understood. We previously identified a cucumber yellow-green peel (ygp) mutant, whose causal gene is MYB DOMAIN PROTEIN 36 (CsMYB36). This study showed that the ygp mutant exhibited a shortened fruit neck and repressed cell expansion in the fruit neck. Further functional analysis showed that CsMYB36 was also a target gene, and its expression was enriched in the fruit neck. Overexpression of CsMYB36 in the ygp mutant rescued shortened fruit necks. Furthermore, transcriptome analysis and reverse transcription quantitative PCR (RT-qPCR) assays revealed that CsMYB36 positively regulates the expression of an expansin-like A3 (CsEXLA3) in the fruit neck, which is essential for cell expansion. Yeast 1-hybrid and dual-luciferase assays revealed that CsMYB36 regulates fruit neck elongation by directly binding to the promoter of CsEXLA3. Collectively, these findings demonstrate that CsMYB36 is an important gene in the regulation of fruit neck length in cucumber plants.


Asunto(s)
Cucumis sativus , Frutas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Factores de Transcripción , Cucumis sativus/genética , Cucumis sativus/crecimiento & desarrollo , Frutas/genética , Frutas/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
3.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35022232

RESUMEN

Nitrogen fixation in soybean takes place in root nodules that arise from de novo cell divisions in the root cortex. Although several early nodulin genes have been identified, the mechanism behind the stimulation of cortical cell division during nodulation has not been fully resolved. Here we provide evidence that two paralogs of soybean SHORT-ROOT (GmSHR) play vital roles in soybean nodulation. Expression of GmSHR4 and GmSHR5 (GmSHR4/5) is induced in cortical cells at the beginning of nodulation, when the first cell divisions occur. The expression level of GmSHR4/5 is positively associated with cortical cell division and nodulation. Knockdown of GmSHR5 inhibits cell division in outer cortical layers during nodulation. Knockdown of both paralogs disrupts the cell division throughout the cortex, resulting in poorly organized nodule primordia with delayed vascular tissue formation. GmSHR4/5 function by enhancing cytokinin signaling and activating early nodulin genes. Interestingly, D-type cyclins act downstream of GmSHR4/5, and GmSHR4/5 form a feedforward loop regulating D-type cyclins. Overexpression of D-type cyclins in soybean roots also enhanced nodulation. Collectively, we conclude that the GmSHR4/5-mediated pathway represents a vital module that triggers cytokinin signaling and activates D-type cyclins during nodulation in soybean.


Asunto(s)
Ciclinas/metabolismo , Glycine max/metabolismo , Glycine max/fisiología , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Nodulación de la Raíz de la Planta/fisiología , Nódulos de las Raíces de las Plantas/fisiología , Homología de Secuencia de Aminoácido , División Celular , Citocininas/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Plantas/genética , Transducción de Señal
4.
J Cell Mol Med ; 28(1): e18037, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37974543

RESUMEN

The tumour microenvironment (TME) is crucial for tumour development and progression. Tumour-associated macrophages (TAMs) in the TME can promote tumour progression and metastasis by releasing cytokines, such as IL-6. Calycosin, a phytoestrogen that is one of the active compounds in Radix Astragali, has been shown to inhibit tumour growth and metastasis. However, the underlying mechanism by which calycosin inhibits tumour growth remains unclear. Thus, this study aimed to investigate the effect of calycosin on IL-6 production in peripheral blood mononuclear cell (PBMC)- and THP-1-derived macrophages and explore its potential mechanisms using co-immunoprecipitation, western blotting, immunofluorescence, chromatin immunoprecipitation and luciferase assays. We found that calycosin treatment substantially upregulated the expression of ER-α36, a variant of the ER, and reduced IL-6 production in macrophages. Mechanistically, ER-α36 physically interacted with NF-κBp65 and retained p65 in the cytoplasm to attenuate NF-κB function as an IL-6 transcriptional inducer. In conclusion, our result indicated that calycosin inhibited IL-6 production by enhancing ER-α36 expression and its interaction with p65, which attenuated NF-κB function as an IL-6 inducer. Therefore, calycosin can be developed as an effective agent for cancer therapy by targeting TAMs.


Asunto(s)
Receptor alfa de Estrógeno , Isoflavonas , FN-kappa B , Neoplasias , Humanos , FN-kappa B/metabolismo , Transducción de Señal , Interleucina-6/metabolismo , Leucocitos Mononucleares/metabolismo , Macrófagos/metabolismo , Neoplasias/metabolismo , Microambiente Tumoral
5.
Plant J ; 116(2): 524-540, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37460197

RESUMEN

To improve our understanding of the mechanism underlying cucumber glossiness regulation, a novel cucumber mutant with a glossy peel (Csgp) was identified. MutMap, genotyping, and gene editing results demonstrated that CsSEC23, which is the core component of COPII vesicles, mediates the glossiness of cucumber fruit peel. CsSEC23 is functionally conserved and located in the Golgi and endoplasmic reticulum. CsSEC23 could interact with CsSEC31, but this interaction was absent in the Csgp mutant, which decreased the efficiency of COPII vesicle transportation. Genes related to wax and cutin transport were upregulated in the Csgp mutant, and the cuticle structure of the Csgp-mutant peel became thinner. Moreover, the wax and cutin contents were also changed due to CsSEC23 mutation. Taken together, the results obtained from this study revealed that CsSEC23 mediates cucumber glossiness, and this mediating might be affected by COPII vesicle transportation.

6.
Plant Biotechnol J ; 22(6): 1724-1739, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38261466

RESUMEN

Increased planting densities boost crop yields. A compact plant architecture facilitates dense planting. However, the mechanisms regulating compact plant architecture in cucurbits remain unclear. In this study, we identified a cucumber (Cucumis sativus) compact plant architecture (cpa1) mutant from an ethyl methane sulfonate (EMS)-mutagenized library that exhibited distinctive phenotypic traits, including reduced leaf petiole angle and leaf size. The candidate mutation causes a premature stop codon in CsaV3_1G036420, which shares similarity to Arabidopsis HOOKLESS 1 (HLS1) encoding putative histone N-acetyltransferase (HAT) protein and was named CsHLS1. Consistent with the mutant phenotype, CsHLS1 was predominantly expressed in leaf petiole bases and leaves. Constitutive overexpressing CsHLS1 in cpa1 restored the wild-type plant architecture. Knockout of CsHLS1 resulted in reduces leaf petiole angle and leaf size and as well as decreased acetylation levels. Furthermore, CsHLS1 directly interacted with CsSCL28 and negatively regulated compact plant architecture in cucumber. Importantly, CsHLS1 knockout increased the photosynthesis rate and leaf nitrogen in cucumbers, thereby maintaining cucumber yield at normal density. Overall, our research provides valuable genetic breeding resource and gene target for creating a compact plant architecture for dense cucumber planting.


Asunto(s)
Cucumis sativus , Hojas de la Planta , Proteínas de Plantas , Cucumis sativus/genética , Cucumis sativus/crecimiento & desarrollo , Cucumis sativus/anatomía & histología , Cucumis sativus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/anatomía & histología , Hojas de la Planta/metabolismo , Regulación de la Expresión Génica de las Plantas , Fotosíntesis/genética , Mutación , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo
7.
J Transl Med ; 22(1): 472, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762511

RESUMEN

BACKGROUND: Vessels encapsulating tumor clusters (VETC) is a newly described vascular pattern that is distinct from microvascular invasion (MVI) in patients with hepatocellular carcinoma (HCC). Despite its importance, the current pathological diagnosis report does not include information on VETC and hepatic plates (HP). We aimed to evaluate the prognostic value of integrating VETC and HP (VETC-HP model) in the assessment of HCC. METHODS: A total of 1255 HCC patients who underwent radical surgery were classified into training (879 patients) and validation (376 patients) cohorts. Additionally, 37 patients treated with lenvatinib were studied, included 31 patients in high-risk group and 6 patients in low-risk group. Least absolute shrinkage and selection operator (LASSO) regression analysis was used to establish a prognostic model for the training set. Harrell's concordance index (C-index), time-dependent receiver operating characteristics curve (tdROC), and decision curve analysis were utilized to evaluate our model's performance by comparing it to traditional tumor node metastasis (TNM) staging for individualized prognosis. RESULTS: A prognostic model, VETC-HP model, based on risk scores for overall survival (OS) was established. The VETC-HP model demonstrated robust performance, with area under the curve (AUC) values of 0.832 and 0.780 for predicting 3- and 5-year OS in the training cohort, and 0.805 and 0.750 in the validation cohort, respectively. The model showed superior prediction accuracy and discrimination power compared to TNM staging, with C-index values of 0.753 and 0.672 for OS and disease-free survival (DFS) in the training cohort, and 0.728 and 0.615 in the validation cohort, respectively, compared to 0.626 and 0.573 for TNM staging in the training cohort, and 0.629 and 0.511 in the validation cohort. Thus, VETC-HP model had higher C-index than TNM stage system(p < 0.01).Furthermore, in the high-risk group, lenvatinib alone appeared to offer less clinical benefit but better disease-free survival time. CONCLUSIONS: The VETC-HP model enhances DFS and OS prediction in HCC compared to traditional TNM staging systems. This model enables personalized temporal survival estimation, potentially improving clinical decision-making in surveillance management and treatment strategies.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/mortalidad , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/mortalidad , Masculino , Femenino , Persona de Mediana Edad , Pronóstico , Curva ROC , Anciano , Análisis de Supervivencia , Estimación de Kaplan-Meier , Reproducibilidad de los Resultados , Quinolinas/uso terapéutico , Compuestos de Fenilurea
8.
Biomacromolecules ; 25(2): 1180-1190, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38240673

RESUMEN

In recent years, the utilization of medical devices has gradually increased and implantation procedures have become common treatments. However, patients are susceptible to the risk of implant infections. This study utilized chemical grafting to immobilize polyethylenimine (QPEI) and hyaluronic acid (HA) on the surface of the mesh to improve biocompatibility while being able to achieve antifouling antimicrobial effects. From the in vitro testing, PP-PDA-Q-HA exhibited a high antibacterial ratio of 93% against S. aureus, 93% against E. coli, and 85% against C. albicans. In addition, after five rounds of antimicrobial testing, the coating continued to exhibit excellent antimicrobial properties; PP-PDA-Q-HA also inhibits the formation of bacterial biofilms. In addition, PP-PDA-Q-HA has good hemocompatibility and cytocompatibility. In vivo studies in animal implantation infection models also demonstrated the excellent antimicrobial properties of PP-PDA-Q-HA. Our study provides a promising strategy for the development of antimicrobial surface medical materials with excellent biocompatibility.


Asunto(s)
Antiinfecciosos , Incrustaciones Biológicas , Animales , Humanos , Staphylococcus aureus , Escherichia coli , Antibacterianos/farmacología , Antibacterianos/química , Biopelículas , Antiinfecciosos/farmacología , Hernia , Materiales Biocompatibles Revestidos/farmacología , Materiales Biocompatibles Revestidos/química , Propiedades de Superficie
9.
Ann Pharmacother ; 58(3): 214-222, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37312538

RESUMEN

BACKGROUND: There are few studies on using rivaroxaban and low molecular heparin (LMWH) to prevent venous thromboembolism (VTE) in hospitalized cancer patients. OBJECTIVE: We conducted a retrospective study to evaluate the efficacy and safety of rivaroxaban versus LMWH for the primary prevention of VTE in inpatient cancer patients. METHODS: Information on patients was collected through 6-month follow-up and medical record inquiries. Clinical outcomes included VTE, total bleeding, thrombosis, major bleeding, minor bleeding, all-cause death, and a composite endpoint of bleeding, thrombosis, and death. RESULTS: A total of 602 hospitalized cancer patients were included in this study. During 6 months of follow-up, there were 26 VTE events (8.6%), 42 total bleeding events (7.0%), 62 all-cause deaths (10.3%), and 140 composite endpoints (23.3%). After adjusting for various confounding factors, there were no significant differences between the rivaroxaban and LMWH for VTE events (OR = 0.851, 95% CI [0.387-1.872], P=0.688), total bleeding (OR = 1.690, 95% CI [0.768-3.719], P = 0.192], thrombosis events (OR = 0.919, 95% CI [0.520-1.624], P = 0.772], major bleeding (OR = 0.276, 95% CI [0.037-2.059], P = 0.209), all-cause death (OR = 0.994, 95% CI [0.492-2.009], P = 0.987), and composite endpoints (OR = 0.994, 95% CI [0.492-2.009], P = 0.987), while minor bleeding (OR = 3.661 95% CI [1.000-7.083], P = 0.050) was significantly higher in the rivaroxaban than in the LMWH. CONCLUSIONS AND RELEVANCE: In thromboprophylaxis in inpatient cancer patients, rivaroxaban has a similar rate of VTE and bleeding events as LMWH. Our results may provide a reference for the clinical use of rivaroxaban to prevent VTE in hospitalized cancer patients.


Asunto(s)
Neoplasias , Trombosis , Tromboembolia Venosa , Humanos , Heparina/efectos adversos , Rivaroxabán/efectos adversos , Tromboembolia Venosa/tratamiento farmacológico , Anticoagulantes/efectos adversos , Heparina de Bajo-Peso-Molecular/efectos adversos , Estudios Retrospectivos , Pacientes Internos , Hemorragia/tratamiento farmacológico , Neoplasias/complicaciones , Neoplasias/tratamiento farmacológico , Trombosis/tratamiento farmacológico
10.
Phys Chem Chem Phys ; 26(4): 2768-2779, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38189553

RESUMEN

Along with the miniaturization and versatility of organic optoelectronic devices, it is desired to achieve a profound comprehension of the charge transport mechanism and even the basic device physics. The basis of these studies is the acquisition of relevant information about energy levels. This review provides a comprehensive analysis of five commonly-used techniques, including cyclic voltammetry, ultraviolet electron spectroscopy, inverse photoemission electron spectroscopy, low energy inverse photoemission spectroscopy and hot electron spectroscopy. According to the advantages and disadvantages, working mechanism, and application conditions, researchers will screen out a reliable and suitable characterization method, quickly and accurately. This should be beneficial for the efficient promotion of organic electronics and save valuable time for the related research studies.

11.
Ann Clin Microbiol Antimicrob ; 23(1): 15, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38350983

RESUMEN

PURPOSE: Multidrug-resistant (MDR) bacteria impose a considerable health-care burden and are associated with bronchiectasis exacerbation. This study investigated the clinical outcomes of adult patients with bronchiectasis following MDR bacterial infection. METHODS: From the Chang Gung Research Database, we identified patients with bronchiectasis and MDR bacterial infection from 2008 to 2017. The control group comprised patients with bronchiectasis who did not have MDR bacterial infection and were propensity-score matched at a 1:2 ratio. The main outcomes were in-hospital and 3-year mortality. RESULTS: In total, 554 patients with both bronchiectasis and MDR bacterial infection were identified. The types of MDR bacteria that most commonly affected the patients were MDR- Acinetobacter baumannii (38.6%) and methicillin-resistant Staphylococcus aureus (18.4%), Extended-spectrum-beta-lactamases (ESBL)- Klebsiella pneumoniae (17.8%), MDR-Pseudomonas (14.8%), and ESBL-E. coli (7.5%). Compared with the control group, the MDR group exhibited lower body mass index scores, higher rate of chronic bacterial colonization, a higher rate of previous exacerbations, and an increased use of antibiotics. Furthermore, the MDR group exhibited a higher rate of respiratory failure during hospitalization (MDR vs. control, 41.3% vs. 12.4%; p < 0.001). The MDR and control groups exhibited in-hospital mortality rates of 26.7% and 7.6%, respectively (p < 0.001); 3-year respiratory failure rates of 33.5% and 13.5%, respectively (p < 0.001); and 3-year mortality rates of 73.3% and 41.5%, respectively (p < 0.001). After adjustments were made for confounding factors, the infection with MDR and MDR bacteria species were determined to be independent risk factors affecting in-hospital and 3-year mortality. CONCLUSIONS: MDR bacteria were discovered in patients with more severe bronchiectasis and were independently associated with an increased risk of in-hospital and 3-year mortality. Given our findings, we recommend that clinicians identify patients at risk of MDR bacterial infection and follow the principle of antimicrobial stewardship to prevent the emergence of resistant bacteria among patients with bronchiectasis.


Asunto(s)
Infecciones Bacterianas , Bronquiectasia , Staphylococcus aureus Resistente a Meticilina , Insuficiencia Respiratoria , Adulto , Humanos , Escherichia coli , Antibacterianos/uso terapéutico , Antibacterianos/farmacología , Bronquiectasia/tratamiento farmacológico , Bronquiectasia/epidemiología , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/epidemiología , Infecciones Bacterianas/microbiología , Fibrosis , Insuficiencia Respiratoria/tratamiento farmacológico , Farmacorresistencia Bacteriana Múltiple
12.
Environ Health ; 23(1): 29, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38504259

RESUMEN

BACKGROUND: Cadmium and nickel exposure can cause oxidative stress, induce inflammation, inhibit immune function, and therefore has significant impacts on the pathogenesis and severity of many diseases. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can also provoke oxidative stress and the dysregulation of inflammatory and immune responses. This study aimed to assess the potential associations of cadmium and nickel exposure with the severity and clinical outcomes of patients with coronavirus disease 2019 (COVID-19). METHODS: We performed a retrospective, observational, bicenter cohort analysis of patients with SARS-CoV-2 infection in Taiwan between June 2022 and July 2023. Cadmium and nickel concentrations in blood and urine were measured within 3 days of the diagnosis of acute SARS-CoV-2 infection, and the severity and clinical outcomes of patients with COVID-19 were analyzed. RESULTS: A total of 574 patients were analyzed and divided into a severe COVID-19 group (hospitalized patients) (n = 252; 43.9%), and non-severe COVID-19 group (n = 322; 56.1%). The overall in-hospital mortality rate was 11.8% (n = 68). The severe COVID-19 patients were older, had significantly more comorbidities, and significantly higher neutrophil/lymphocyte ratio, C-reactive protein, and interleukin-6 than the non-severe COVID-19 patients (all p < 0.05). Blood and urine cadmium and urine nickel concentrations were significantly higher in the severe COVID-19 patients than in the non-severe COVID-19 patients. Among the severe COVID-19 patients, those in higher urine cadmium/creatinine quartiles had a significantly higher risk of organ failure (i.e., higher APACHE II and SOFA scores), higher neutrophil/lymphocyte ratio, lower PaO2/FiO2 requiring higher invasive mechanical ventilation support, higher risk of acute respiratory distress syndrome, and higher 60-, 90-day, and all-cause hospital mortality (all p < 0.05). Multivariable logistic regression models revealed that urine cadmium/creatinine was independently associated with severe COVID-19 (adjusted OR 1.643 [95% CI 1.060-2.547], p = 0.026), and that a urine cadmium/creatinine value > 2.05 µg/g had the highest predictive value (adjusted OR 5.349, [95% CI 1.118-25.580], p = 0.036). CONCLUSIONS: Urine cadmium concentration in the early course of COVID-19 could predict the severity and clinical outcomes of patients and was independently associated with the risk of severe COVID-19.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Cadmio , Estudios Retrospectivos , Creatinina , Níquel , Estudios de Cohortes
13.
BMC Womens Health ; 24(1): 5, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167014

RESUMEN

OBJECTIVE: This study aims to investigate the relationship between abnormal vaginal microecology and human papillomavirus (HPV) infection, as well as the squamous intraepithelial lesions (SIL) progression. METHODS: A total of 383 patients diagnosed with HPV infection in our hospital between March 2017 and February 2022 were selected as the experimental group. In addition, several volunteers (n = 898) who underwent physical examination during the same period were randomly selected as the control group. Subsequently, we conducted several investigations, such as HPV detection and gene typing, examined vaginal microecological imbalances, and performed cytological examinations to analyze the correlation between microecological changes, different types of HPV infection, and SIL progression. RESULTS: HPV detection primarily included single and high-risk types of HPV infections. Moreover, significant disparities in the vaginal microecological environment between patients with persistent HPV infection and the control group, as well as patients with low-grade and high-grade SIL (LSIL and HSIL), were observed. The regression analysis revealed a correlation between LSIL and microflora density, diversity, bacteriological vaginosis (BV), vulvovaginal candidiasis (VVC), trichomonas vaginalis (TV), sialidase, as well as Lactobacillus. In addition, we identified an association between HSIL and pH, flora density, diversity, BV, VVC, candida vaginitis (CV), leukocyte esterase, catalase, and Lactobacillus levels. CONCLUSION: These findings revealed a significant association between abnormal vaginal microecology and both HPV infection and the SIL progression.


Asunto(s)
Candidiasis Vulvovaginal , Infecciones por Papillomavirus , Lesiones Intraepiteliales Escamosas , Displasia del Cuello del Útero , Neoplasias del Cuello Uterino , Femenino , Humanos , Infecciones por Papillomavirus/diagnóstico , Frotis Vaginal , Vagina/patología , Papillomaviridae/genética , Displasia del Cuello del Útero/diagnóstico
14.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34930839

RESUMEN

China has implemented an emission trading system (ETS) to reduce its ever-increasing greenhouse gas emissions while maintaining rapid economic growth. With low carbon prices and infrequent allowance trading, whether China's ETS is an effective approach for climate mitigation has entered the center of the policy and research debate. Utilizing China's regional ETS pilots as a quasi-natural experiment, we provide a comprehensive assessment of the effects of ETS on firm carbon emissions and economic outcomes by means of a matched difference-in-differences (DID) approach. The empirical analysis is based on a unique panel dataset of firm tax records in the manufacturing and public utility sectors during 2009 to 2015. We show unambiguous evidence that the regional ETS pilots are effective in reducing firm emissions, leading to a 16.7% reduction in total emissions and a 9.7% reduction in emission intensity. Regulated firms achieve emission abatement through conserving energy consumption and switching to low-carbon fuels. The economic consequences of the ETS are mixed. On one hand, the ETS has a negative impact on employment and capital input; on the other hand, the ETS incentivizes regulated firms to improve productivity. In the aggregate, the ETS does not exhibit statistically significant effects on output and export. We also find that the ETS displays notable heterogeneity across pilots. Mass-based allowance allocation rules, higher carbon prices, and active allowance trading contribute to more pronounced effects in emission abatement.

15.
J Med Internet Res ; 26: e46319, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073869

RESUMEN

BACKGROUND: Poor anticoagulation management of warfarin may lead to patient admission, prolonged hospital stays, and even death due to anticoagulation-related adverse events. Traditional non-web-based outpatient clinics struggle to provide ideal anticoagulation management services for patients, and there is a need to explore a safer, more effective, and more convenient mode of warfarin management. OBJECTIVE: This study aimed to compare differences in the quality of anticoagulation management and clinical adverse events between a web-based management model (via a smartphone app) and the conventional non-web-based outpatient management model. METHODS: This study is a prospective cohort research that includes multiple national centers. Patients meeting the nadir criteria were split into a web-based management group using the Alfalfa app or a non-web-based management group with traditional outpatient management, and they were then monitored for a 6-month follow-up period to collect coagulation test results and clinical events. The effectiveness and safety of the 2 management models were assessed by the following indicators: time in therapeutic range (TTR), bleeding events, thromboembolic events, all-cause mortality events, cumulative event rates, and the distribution of the international normalized ratio (INR). RESULTS: This national multicenter cohort study enrolled 522 patients between June 2019 and May 2021, with 519 (99%) patients reaching the follow-up end point, including 260 (50%) in the non-web-based management group and 259 (50%) in the web-based management group. There were no observable differences in baseline characteristics between the 2 patient groups. The web-based management group had a significantly higher TTR than the non-web-based management group (82.4% vs 71.6%, P<.001), and a higher proportion of patients received effective anticoagulation management (81.2% vs 63.5%, P<.001). The incidence of minor bleeding events in the non-web-based management group was significantly higher than that in the web-based management group (12.1% vs 6.6%, P=.048). Between the 2 groups, there was no statistically significant difference in the incidence of severe bleeding and thromboembolic and all-cause death events. In addition, compared with the non-web-based management group, the web-based management group had a lower proportion of INR in the extreme subtreatment range (17.6% vs 21.3%) and severe supertreatment range (0% vs 0.8%) and a higher proportion in the treatment range (50.4% vs 43.1%), with statistical significance. CONCLUSIONS: Compared with traditional non-web-based outpatient management, web-based management via the Alfalfa app may be more beneficial because it can enhance patient anticoagulation management quality, lower the frequency of small bleeding events, and improve INR distribution.


Asunto(s)
Anticoagulantes , Relación Normalizada Internacional , Internet , Warfarina , Humanos , Warfarina/uso terapéutico , Warfarina/efectos adversos , Estudios Prospectivos , Anticoagulantes/uso terapéutico , Anticoagulantes/efectos adversos , Femenino , Masculino , Anciano , Persona de Mediana Edad , Hemorragia , Aplicaciones Móviles , Estudios de Cohortes
16.
J Environ Manage ; 366: 121875, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39018863

RESUMEN

Currently, microbial contamination issues have globally brought out a huge health threat to human beings and animals. To be specific, microorganisms including bacteria and viruses display durable ecological toxicity and various diseases to aquatic organisms. In the past decade, the photocatalytic microorganism inactivation technique has attracted more and more concern owing to its green, low-cost, and sustainable process. A variety kinds of photocatalysts have been employed for killing microorganisms in the natural environment. However, two predominant shortcomings including low activity of photocatalysts and diverse impacts of water characteristics are still displayed in the current photocatalytic disinfection system. So far, various strategies to improve the inherent activity of photocatalysts. Other than the modification of photocatalysts, the optimization of environments of water bodies has been also conducted to enhance microorganisms inactivation. In this mini-review, we outlined the recent progress in photocatalytic sterilization of microorganisms. Meanwhile, the relevant methods of photocatalyst modification and the influences of water body characteristics on disinfection ability were thoroughly elaborated. More importantly, the relationships between strategies for constructing advanced photocatalytic microorganism inactivation systems and improved performance were correlated. Finally, the perspectives on the prospects and challenges of photocatalytic disinfection were presented. We sincerely hope that this critical mini-review can inspire some new concepts and ideas in designing advanced photocatalytic disinfection systems.


Asunto(s)
Desinfección , Desinfección/métodos , Catálisis , Bacterias/efectos de la radiación , Bacterias/efectos de los fármacos
17.
Molecules ; 29(4)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38398604

RESUMEN

Andrographis paniculata is a medicinal plant traditionally used to produce diterpene lactones and flavonoids, which possess various biological activities. Widely distributed in China, India, and other Southeast Asia countries, A. paniculata has become an important economic crop, significantly treating SARS-CoV-2, and is being cultivated on a large scale in southern China. The biosynthesis of active ingredients in A. paniculata are regulated and controlled by genes, but their specific roles are still not fully understood. To further explore the growth regulation factors and utilization of its medicinal parts of this industrial crop, chemical and transcriptome analyses were conducted on the roots, stems, and leaves of A. paniculata to identify the biosynthesis pathways and related candidate genes of the active ingredients. The chemical analysis revealed that the main components of A. paniculata were diterpene lactones and flavonoids, which displayed potential ability to treat SARS-CoV-2 through molecular docking. Moreover, the transcriptome sequencing annotated a total of 40,850 unigenes, including 7962 differentially expressed genes. Among these, 120 genes were involved in diterpene lactone biosynthesis and 60 genes were involved in flavonoid biosynthesis. The expression of diterpene lactone-related genes was the highest in leaves and the lowest in roots, consistent with our content determination results. It is speculated that these highly expressed genes in leaves may be involved in the biosynthesis pathway of diterpenes. Furthermore, two class Ⅰ terpene synthases in A. paniculata transcriptome were also annotated, providing reference for the downstream pathway of the diterpene lactone biosynthesis. With their excellent market value, our experiments will promote the study of the biosynthetic genes for active ingredients in A. paniculata and provide insights for subsequent in vitro biosynthesis.


Asunto(s)
Andrographis , Diterpenos , Terpenos/metabolismo , Transcriptoma , Andrographis/genética , Andrographis/química , Flavonoides/metabolismo , Simulación del Acoplamiento Molecular , Diterpenos/química , Lactonas/metabolismo , Antivirales/metabolismo
18.
Cancer Immunol Immunother ; 72(6): 1685-1698, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36624155

RESUMEN

Anti-PD-1-based therapy has resulted in a minimal clinical response in malignant gliomas. Gliomas contain numerous glioma-associated microglia/macrophages (GAMs), reported to contribute to an immunosuppressive microenvironment and promote glioma progression. However, whether and how GAMs affect anti-PD-1 immunotherapy in glioma remains unclear. Here, we demonstrated that M1-like GAMs contribute to the anti-PD-1 therapeutic response, while the accumulation of M2-like GAMs is associated with therapeutic resistance. Furthermore, we found that PD-L1 ablation reverses GAMs M2-like phenotype and is beneficial to anti-PD-1 therapy. We also demonstrated that tumor-induced impairment of the antigen-presenting function of GAMs could limit the antitumor immunity of CD4+ T cells in anti-PD-1 therapy. Our study highlights the impact of GAMs activation on anti-PD-1 treatment and provides new insights into the role of GAMs in regulating anti-PD-1 therapy in gliomas.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Microglía , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Glioma/tratamiento farmacológico , Glioma/patología , Macrófagos , Inmunoterapia , Microambiente Tumoral , Antígeno B7-H1
19.
Plant Physiol ; 190(2): 1165-1181, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-35781829

RESUMEN

Vascular tissues are surrounded by an apoplastic barrier formed by endodermis that is vital for selective absorption of water and nutrients. Lignification and suberization of endodermal cell walls are fundamental processes in establishing the apoplastic barrier. Endodermal suberization in Arabidopsis (Arabidopsis thaliana) roots is presumed to be the integration of developmental regulation and stress responses. In root endodermis, the suberization level is enhanced when the Casparian strip, the lignified structure, is defective. However, it is not entirely clear how lignification and suberization interplay and how they interact with stress signaling. Here, in Arabidopsis, we constructed a hierarchical network mediated by SHORT-ROOT (SHR), a master regulator of endodermal development, and identified 13 key MYB transcription factors (TFs) that form multiple sub-networks. Combined with functional analyses, we further uncovered MYB TFs that mediate feedback or feed-forward loops, thus balancing lignification and suberization in Arabidopsis roots. In addition, sub-networks comprising nine MYB TFs were identified that interact with abscisic acid signaling to integrate stress response and root development. Our data provide insights into the mechanisms that enhance plant adaptation to changing environments.


Asunto(s)
Arabidopsis , Ácido Abscísico , Arabidopsis/fisiología , Pared Celular/genética , Redes Reguladoras de Genes , Lignina , Lípidos , Raíces de Plantas , Factores de Transcripción/genética , Agua
20.
Plant Physiol ; 190(2): 1182-1198, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-35809074

RESUMEN

Cell wall lignification is a key step in forming functional endodermis and protoxylem (PX) in plant roots. Lignified casparian strips (CS) in endodermis and tracheary elements of PX are essential for selective absorption and transport of water and nutrients. Although multiple key regulators of CS and PX have been identified, the spatial information that drives the developmental shift to root lignification remains unknown. Here, we found that brassinosteroid (BR) signaling plays a key role in inhibiting root lignification in the root elongation zone. The inhibitory activity of BR signaling occurs partially through the direct binding of BRASSINAZOLE-RESISTANT 1 (BZR1) to SHORT-ROOT (SHR), repressing the SHR-mediated activation of downstream genes that are involved in root lignification. Upon entering the mature root zone, BR signaling declines rapidly, which releases SHR activity and initiates root lignification. Our results provide a mechanistic view of the developmental transition to cell wall lignification in Arabidopsis thaliana roots.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA