Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 302
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Trends Biochem Sci ; 49(3): 192-194, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37923611

RESUMEN

Plants undergo translational reprogramming when they are under attack by pathogens. Xiang et al. recently revealed that plant helicases induced by pathogen recognition unwind RNA hairpins upstream of the main open reading frames (mORFs), thus allowing ribosomes to bypass the upstream ORFs (uORFs) and translate downstream defense proteins, a mechanism that is also found in mammals.


Asunto(s)
Proteínas de Plantas , Biosíntesis de Proteínas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ribosomas/metabolismo , ARN/metabolismo , ADN Helicasas/metabolismo , Sistemas de Lectura Abierta
2.
EMBO J ; 41(18): e110521, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35929182

RESUMEN

Viruses often usurp host machineries for their amplification, but it remains unclear if hosts may subvert virus proteins to regulate viral proliferation. Here, we show that the 17K protein, an important virulence factor conserved in barley yellow dwarf viruses (BYDVs) and related poleroviruses, is phosphorylated by host GRIK1-SnRK1 kinases, with the phosphorylated 17K (P17K) capable of enhancing the abundance of virus-derived small interfering RNAs (vsiRNAs) and thus antiviral RNAi. Furthermore, P17K interacts with barley small RNA-degrading nuclease 1 (HvSDN1) and impedes HvSDN1-catalyzed vsiRNA degradation. Additionally, P17K weakens the HvSDN1-HvAGO1 interaction, thus hindering HvSDN1 from accessing and degrading HvAGO1-carried vsiRNAs. Importantly, transgenic expression of 17K phosphomimetics (17K5D ), or genome editing of SDN1, generates stable resistance to BYDV through elevating vsiRNA abundance. These data validate a novel mechanism that enhances antiviral RNAi through host subversion of a viral virulence protein to inhibit SDN1-catalyzed vsiRNA degradation and suggest new ways for engineering BYDV-resistant crops.


Asunto(s)
Hordeum , Antivirales , Hordeum/genética , Hordeum/metabolismo , Enfermedades de las Plantas/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Viral/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Virulencia
3.
Plant J ; 119(1): 432-444, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38635415

RESUMEN

Thiamine functions as a crucial activator modulating plant health and broad-spectrum stress tolerances. However, the role of thiamine in regulating plant virus infection is largely unknown. Here, we report that the multifunctional 17K protein encoded by barley yellow dwarf virus-GAV (BYDV-GAV) interacted with barley pyrimidine synthase (HvTHIC), a key enzyme in thiamine biosynthesis. HvTHIC was found to be localized in chloroplast via an N-terminal 74-amino acid domain. However, the 17K-HvTHIC interaction restricted HvTHIC targeting to chloroplasts and triggered autophagy-mediated HvTHIC degradation. Upon BYDV-GAV infection, the expression of the HvTHIC gene was significantly induced, and this was accompanied by accumulation of thiamine and salicylic acid. Silencing of HvTHIC expression promoted BYDV-GAV accumulation. Transcriptomic analysis of HvTHIC silenced and non-silenced barley plants showed that the differentially expressed genes were mainly involved in plant-pathogen interaction, plant hormone signal induction, phenylpropanoid biosynthesis, starch and sucrose metabolism, photosynthesis-antenna protein, and MAPK signaling pathway. Thiamine treatment enhanced barley resistance to BYDV-GAV. Taken together, our findings reveal a molecular mechanism underlying how BYDV impedes thiamine biosynthesis to uphold viral infection in plants.


Asunto(s)
Hordeum , Enfermedades de las Plantas , Proteínas de Plantas , Tiamina , Hordeum/virología , Hordeum/genética , Hordeum/metabolismo , Tiamina/metabolismo , Tiamina/biosíntesis , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Luteovirus/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas Virales/metabolismo , Proteínas Virales/genética , Cloroplastos/metabolismo , Ácido Salicílico/metabolismo , Interacciones Huésped-Patógeno , Resistencia a la Enfermedad/genética
4.
Plant Biotechnol J ; 22(3): 572-586, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37855813

RESUMEN

Barley yellow dwarf viruses (BYDVs) cause widespread damage to global cereal crops. Here we report a novel strategy for elevating resistance to BYDV infection. The 17K protein, a potent virulence factor conserved in BYDVs, interacted with barley IMP-α1 and -α2 proteins that are nuclear transport receptors. Consistently, a nuclear localization signal was predicted in 17K, which was found essential for 17K to be transported into the nucleus and to interact with IMP-α1 and -α2. Reducing HvIMP-α1 and -α2 expression by gene silencing attenuated BYDV-elicited dwarfism, accompanied by a lowered nuclear accumulation of 17K. Among the eight common wheat CRISPR mutants with two to four TaIMP-α1 and -α2 genes mutated, the triple mutant α1aaBBDD /α2AAbbdd and the tetra-mutant α1aabbdd /α2AAbbDD displayed strong BYDV resistance without negative effects on plant growth under field conditions. The BYDV resistance exhibited by α1aaBBDD /α2AAbbdd and α1aabbdd /α2AAbbDD was correlated with decreased nuclear accumulation of 17K and lowered viral proliferation in infected plants. Our work uncovers the function of host IMP-α proteins in BYDV pathogenesis and generates the germplasm valuable for breeding BYDV-resistant wheat. Appropriate reduction of IMP-α gene expression may be broadly useful for enhancing antiviral resistance in agricultural crops and other economically important organisms.


Asunto(s)
Luteovirus , Triticum , Triticum/genética , alfa Carioferinas/genética , Resistencia a la Enfermedad/genética , Fitomejoramiento , Luteovirus/genética , Productos Agrícolas/genética , Expresión Génica , Enfermedades de las Plantas/genética
5.
Nature ; 557(7705): 424-428, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29743678

RESUMEN

Triticum urartu (diploid, AA) is the progenitor of the A subgenome of tetraploid (Triticum turgidum, AABB) and hexaploid (Triticum aestivum, AABBDD) wheat1,2. Genomic studies of T. urartu have been useful for investigating the structure, function and evolution of polyploid wheat genomes. Here we report the generation of a high-quality genome sequence of T. urartu by combining bacterial artificial chromosome (BAC)-by-BAC sequencing, single molecule real-time whole-genome shotgun sequencing 3 , linked reads and optical mapping4,5. We assembled seven chromosome-scale pseudomolecules and identified protein-coding genes, and we suggest a model for the evolution of T. urartu chromosomes. Comparative analyses with genomes of other grasses showed gene loss and amplification in the numbers of transposable elements in the T. urartu genome. Population genomics analysis of 147 T. urartu accessions from across the Fertile Crescent showed clustering of three groups, with differences in altitude and biostress, such as powdery mildew disease. The T. urartu genome assembly provides a valuable resource for studying genetic variation in wheat and related grasses, and promises to facilitate the discovery of genes that could be useful for wheat improvement.


Asunto(s)
Evolución Molecular , Genoma de Planta/genética , Filogenia , Triticum/clasificación , Triticum/genética , Altitud , Cromosomas Artificiales Bacterianos/genética , Cromosomas de las Plantas/genética , Elementos Transponibles de ADN/genética , Variación Genética , Mapeo Geográfico , Anotación de Secuencia Molecular , Enfermedades de las Plantas/microbiología , Análisis de Secuencia de ADN , Sintenía/genética
6.
J Integr Plant Biol ; 66(3): 468-483, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38409921

RESUMEN

Achieving high yield and good quality in crops is essential for human food security and health. However, there is usually disharmony between yield and quality. Seed storage protein (SSP) and starch, the predominant components in cereal grains, determine yield and quality, and their coupled synthesis causes a yield-quality trade-off. Therefore, dissection of the underlying regulatory mechanism facilitates simultaneous improvement of yield and quality. Here, we summarize current findings about the synergistic molecular machinery underpinning SSP and starch synthesis in the leading staple cereal crops, including maize, rice and wheat. We further evaluate the functional conservation and differentiation of key regulators and specify feasible research approaches to identify additional regulators and expand insights. We also present major strategies to leverage resultant information for simultaneous improvement of yield and quality by molecular breeding. Finally, future perspectives on major challenges are proposed.


Asunto(s)
Grano Comestible , Almidón , Humanos , Grano Comestible/metabolismo , Almidón/metabolismo , Proteínas de Almacenamiento de Semillas/metabolismo , Proteínas de Plantas/metabolismo , Productos Agrícolas/genética , Productos Agrícolas/metabolismo
7.
J Integr Plant Biol ; 66(4): 638-641, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38351739

RESUMEN

The compact CRISPR/CasΦ2 system provides a complementary genome engineering tool for efficient gene editing including cytosine and adenosine base editing in wheat and rye with high specificity, efficient use of the protospacer-adjacent motif TTN, and an alternative base-editing window.


Asunto(s)
Edición Génica , Triticum , Triticum/genética , Sistemas CRISPR-Cas/genética , Secale/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas
9.
Genomics ; 114(2): 110288, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35124171

RESUMEN

Transposable elements (TEs) play a pivotal role in reshaping the plant genome. Helitrons represent a new class of transposable elements recently discovered in animals and plants. Helitrons, DNA transposons that replicate via a rolling-circle replication mechanism, are a major driving force behind genome evolution. Since the recent divergence of the modern cultivars (e.g., AK58) and landraces (e.g., Chinese Spring), Helitrons appear to have contributed greatly to genome variability. We first identified 214,665 Helitrons in AK58 by HelitronScanner software and further detected 18,668 tandem duplicated Helitron regions (TDHRs) from all the Helitrons identified. There are 39% of TDHRs (7289) translocated since the divergence of the AK58 and Chinese Spring genomes. What interested us even more are the 462 TDHRs exclusive to the AK58 genome. We also found 235 TDHRs in the 21 centromeric regions and these TDHRs contributed to centromere plasticity. Another very interesting DNA transposon, CACTA, accounting for 15% of AK58 genome, was also the focus of this study because they often inserted into gene rich regions. We found that CACTAs have inserted into many agronomically important genes, such as seed dormancy gene TaMFT and vernalization gene TaVrn1, indicating the important role of CACTAs in modern wheat adaptation.


Asunto(s)
Elementos Transponibles de ADN , Triticum , Animales , Centrómero , Genoma de Planta , Programas Informáticos , Triticum/genética
10.
Int J Mol Sci ; 24(11)2023 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-37298301

RESUMEN

Transposons (TEs) account for more than 80% of the wheat genome, the highest among all known crop species. They play an important role in shaping the elaborate genomic landscape, which is the key to the speciation of wheat. In this study, we analyzed the association between TEs, chromatin states, and chromatin accessibility in Aegilops tauschii, the D genome donor of bread wheat. We found that TEs contributed to the complex but orderly epigenetic landscape as chromatin states showed diverse distributions on TEs of different orders or superfamilies. TEs also contributed to the chromatin state and openness of potential regulatory elements, affecting the expression of TE-related genes. Some TE superfamilies, such as hAT-Ac, carry active/open chromatin regions. In addition, the histone mark H3K9ac was found to be associated with the accessibility shaped by TEs. These results suggest the role of diversiform TEs in shaping the epigenetic landscape and in gene expression regulation in Aegilops tauschii. This has positive implications for understanding the transposon roles in Aegilops tauschii or the wheat D genome.


Asunto(s)
Aegilops , Aegilops/genética , Genoma de Planta , Triticum/genética , Cromatina , Epigénesis Genética
11.
Circulation ; 143(20): 2007-2022, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33663221

RESUMEN

BACKGROUND: Heart failure (HF) is among the leading causes of morbidity and mortality, and its prevalence continues to rise. LARP7 (La ribonucleoprotein domain family member 7) is a master regulator that governs the DNA damage response and RNAPII (RNA polymerase II) pausing pathway, but its role in HF pathogenesis is incompletely understood. METHODS: We assessed LARP7 expression in human HF and in nonhuman primate and mouse HF models. To study the function of LARP7 in heart, we generated global and cardiac-specific LARP7 knockout mice. We acutely abolished LARP7 in mature cardiomyocytes by Cas9-mediated LARP7 somatic knockout. We overexpressed LARP7 in cardiomyocytes using adeno-associated virus serotype 9 and ATM (ataxia telangiectasia mutated protein) inhibitor. The therapeutic potential of LARP7-regulated pathways in HF was tested in a mouse myocardial infarction model. RESULTS: LARP7 was profoundly downregulated in failing human hearts and in nonhuman primate and murine hearts after myocardial infarction. Low LARP7 levels in failing hearts were linked to elevated reactive oxygen species, which activated the ATM-mediated DNA damage response pathway and promoted LARP7 ubiquitination and degradation. Constitutive LARP7 knockout in mouse resulted in impaired mitochondrial biogenesis, myocardial hypoplasia, and midgestational lethality. Cardiac-specific inactivation resulted in defective mitochondrial biogenesis, impaired oxidative phosphorylation, elevated oxidative stress, and HF by 4 months of age. These abnormalities were accompanied by reduced SIRT1 (silent mating type information regulation 2 homolog 1) stability and deacetylase activity that impaired SIRT1-mediated transcription of genes for oxidative phosphorylation and energy metabolism and dampened cardiac function. Restoring LARP7 expression after myocardial infarction by either adeno-associated virus-mediated LARP7 expression or small molecule ATM inhibitor substantially improved the function of injured heart. CONCLUSIONS: LARP7 is essential for mitochondrial biogenesis, energy production, and cardiac function by modulating SIRT1 homeostasis and activity. Reduction of LARP7 in diseased hearts owing to activation of the ATM pathway contributes to HF pathogenesis and restoring LARP7 in the injured heart confers myocardial protection. These results identify the ATM-LARP7-SIRT1 pathway as a target for therapeutic intervention in HF.


Asunto(s)
Insuficiencia Cardíaca/genética , Mitocondrias/metabolismo , Ribonucleoproteínas/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Biogénesis de Organelos
12.
Acta Pharmacol Sin ; 43(10): 2550-2561, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35217815

RESUMEN

Latest clinical research shows that trimetazidine therapy during the perioperative period relieves endothelial dysfunction in patients with unstable angina induced by percutaneous coronary intervention. In this study we investigated the effects of TMZ on myocardial angiogenesis in pressure overload-induced cardiac hypertrophy mice. Cardiac hypertrophy was induced in mice by transverse aortic constriction (TAC) surgery. TAC mice were administered trimetazidine (2.8 mg/100 µL, i.g.) for 28 consecutive days. We showed that trimetazidine administration significantly increased blood vessel density in the left ventricular myocardium and abrogated cardiac dysfunction in TAC mice. Co-administration of a specific HSF1 inhibitor KRIBB11 (1.25 mg/100 µL, i.h.) abrogated the angiogenesis-promoting effects of trimetazidine in TAC mice. Using luciferase reporter and electrophoretic mobility shift assays we demonstrated that the transcription factor HSF1 bound to the promoter region of VEGF-A, and the transcriptional activity of HSF1 was enhanced upon trimetazidine treatment. In molecular docking analysis we found that trimetazidine directly bound to Akt via a hydrogen bond with Asp292 and a pi-pi bond with Trp80. In norepinephrine-treated HUVECs, we showed that trimetazidine significantly increased the phosphorylation of Akt and the synergistic nuclear translocation of Akt and HSF1, as well as the binding of Akt and HSF1 in the nucleus. These results suggest that trimetazidine enhances myocardial angiogenesis through a direct interaction with Akt and promotion of nuclear translocation of HSF1, and that trimetazidine may be used for the treatment of myocardial angiogenic disorders in hypertensive patients.


Asunto(s)
Trimetazidina , Animales , Ratones , Inductores de la Angiogénesis/farmacología , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/metabolismo , Factores de Transcripción del Choque Térmico/metabolismo , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Miocardio/metabolismo , Miocitos Cardíacos , Neovascularización Patológica/metabolismo , Norepinefrina/metabolismo , Norepinefrina/farmacología , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factores de Transcripción/metabolismo , Trimetazidina/metabolismo , Trimetazidina/farmacología , Trimetazidina/uso terapéutico , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
13.
Eur Heart J ; 42(42): 4373-4385, 2021 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-34534287

RESUMEN

AIMS: Aortic aneurysm and dissection (AAD) are high-risk cardiovascular diseases with no effective cure. Macrophages play an important role in the development of AAD. As succinate triggers inflammatory changes in macrophages, we investigated the significance of succinate in the pathogenesis of AAD and its clinical relevance. METHODS AND RESULTS: We used untargeted metabolomics and mass spectrometry to determine plasma succinate concentrations in 40 and 1665 individuals of the discovery and validation cohorts, respectively. Three different murine AAD models were used to determine the role of succinate in AAD development. We further examined the role of oxoglutarate dehydrogenase (OGDH) and its transcription factor cyclic adenosine monophosphate-responsive element-binding protein 1 (CREB) in the context of macrophage-mediated inflammation and established p38αMKOApoe-/- mice. Succinate was the most upregulated metabolite in the discovery cohort; this was confirmed in the validation cohort. Plasma succinate concentrations were higher in patients with AAD compared with those in healthy controls, patients with acute myocardial infarction (AMI), and patients with pulmonary embolism (PE). Moreover, succinate administration aggravated angiotensin II-induced AAD and vascular inflammation in mice. In contrast, knockdown of OGDH reduced the expression of inflammatory factors in macrophages. The conditional deletion of p38α decreased CREB phosphorylation, OGDH expression, and succinate concentrations. Conditional deletion of p38α in macrophages reduced angiotensin II-induced AAD. CONCLUSION: Plasma succinate concentrations allow to distinguish patients with AAD from both healthy controls and patients with AMI or PE. Succinate concentrations are regulated by the p38α-CREB-OGDH axis in macrophages.


Asunto(s)
Aneurisma de la Aorta , Animales , Biomarcadores , Disección , Humanos , Metabolómica , Ratones , Ácido Succínico
14.
Int J Mol Sci ; 23(8)2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35457090

RESUMEN

Hydrogen sulfide (H2S) serves as an important gaseous signaling molecule that is involved in intra- and intercellular signal transduction in plant-environment interactions. In plants, H2S is formed in sulfate/cysteine reduction pathways. The activation of endogenous H2S and its exogenous application has been found to be highly effective in ameliorating a wide variety of stress conditions in plants. The H2S interferes with the cellular redox regulatory network and prevents the degradation of proteins from oxidative stress via post-translational modifications (PTMs). H2S-mediated persulfidation allows the rapid response of proteins in signaling networks to environmental stimuli. In addition, regulatory crosstalk of H2S with other gaseous signals and plant growth regulators enable the activation of multiple signaling cascades that drive cellular adaptation. In this review, we summarize and discuss the current understanding of the molecular mechanisms of H2S-induced cellular adjustments and the interactions between H2S and various signaling pathways in plants, emphasizing the recent progress in our understanding of the effects of H2S on the PTMs of proteins. We also discuss future directions that would advance our understanding of H2S interactions to ultimately mitigate the impacts of environmental stresses in the plants.


Asunto(s)
Sulfuro de Hidrógeno , Reguladores del Crecimiento de las Plantas , Gases/metabolismo , Sulfuro de Hidrógeno/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas/metabolismo , Transducción de Señal , Estrés Fisiológico
15.
J Mol Cell Cardiol ; 154: 80-91, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33378686

RESUMEN

Obesity-driven cardiac lipid accumulation can progress to lipotoxic cardiomyopathy. Soluble epoxide hydrolase (sEH) is the major enzyme that metabolizes epoxyeicosatrienoic acids (EETs), which have biological activity of regulating lipid metabolism. The current study explores the unknown role of sEH deficiency in lipotoxic cardiomyopathy and its underlying mechanism. Wild-type and Ephx2 knock out (sEH KO) C57BL/6 J mice were fed with high-fat diet (HFD) for 24 weeks to induce lipotoxic cardiomyopathy animal models. Palmitic acid (PA) was utilized to induce lipotoxicity to cardiomyocytes for in vitro study. We found sEH KO, independent of plasma lipid and blood pressures, significantly attenuated HFD-induced myocardial lipid accumulation and cardiac dysfunction in vivo. HFD-induced lipotoxic cardiomyopathy and dysfunction of adenosine 5'-monophosphate-activated protein kinase-mammalian target of rapamycin complex (AMPK-mTORC) signaling mediated lipid autophagy in heart were restored by sEH KO. In primary neonatal mouse cardiomyocytes, both sEH KO and sEH substrate EETs plus sEH inhibitor AUDA treatments attenuated PA-induced lipid accumulation. These effects were blocked by inhibition of AMPK or autophagy. The outcomes were supported by the results that sEH KO and EETs plus AUDA rescued HFD- and PA-induced impairment of autophagy upstream signaling of AMPK-mTORC, respectively. These findings revealed that sEH deficiency played an important role in attenuating myocardial lipid accumulation and provided new insights into treating lipotoxic cardiomyopathy. Regulation of autophagy via AMPK-mTORC signaling pathway is one of the underlying mechanisms.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia , Cardiomiopatías/etiología , Cardiomiopatías/metabolismo , Epóxido Hidrolasas/deficiencia , Miocardio/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Biomarcadores , Cardiomiopatías/fisiopatología , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Metabolismo de los Lípidos , Ratones , Ratones Noqueados
16.
Plant J ; 102(2): 262-275, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31782581

RESUMEN

FLOWERING LOCUS T (FT) protein, physiologically florigen, has been identified as a system integrator of numerous flowering time pathways in many studies, and its homologs are found throughout the plant lineage. It is important to uncover how precisely florigenic homologs contribute to flowering initiation and how these factors interact genetically. Here we dissected the function of Brachypodium FT orthologs BdFTL1 and BdFTL2 using overexpression and gene-editing experiments. Transgenic assays showed that both BdFTL1 and BdFTL2 could promote flowering, whereas BdFTL2 was essential for flowering initiation. Notably, BdFTL1 is subject to alternative splicing (AS), and its transcriptional level and AS are significantly affected by BdFTL2. Additionally, BdFTL2 could bind with the PHD-containing protein BdES43, an H3K4me3 reader. Furthermore, BdES43 was antagonistic to BdFTL2 in flowering initiation in a transcription-dependent manner and significantly affected BdFTL1 expression. BdFTL2, BdES43 and H3K4me3 also had highly similar distribution patterns within the BdFTL1 locus, indicating their interplay in regulating target genes. Taken together, florigen BdFTL2 functions as a potential epigenetic effector of BdFTL1 by interacting with a BdES43-H3K4me3 complex. This finding provides an additional insight for the regulatory mechanism underlying the multifaceted roles of florigen.


Asunto(s)
Brachypodium/genética , Florigena/metabolismo , Histonas/metabolismo , Brachypodium/crecimiento & desarrollo , Flores/genética , Flores/crecimiento & desarrollo , Histonas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Tiempo
17.
Plant Biotechnol J ; 19(5): 897-909, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33225586

RESUMEN

The LRK10-like receptor kinases (LRK10L-RLKs) are ubiquitously present in higher plants, but knowledge of their expression and function is still limited. Here, we report expression and functional analysis of TtdLRK10L-1, a typical LRK10L-RLK in durum wheat (Triticum turgidum L. ssp. durum). The introns of TtdLRK10L-1 contained multiple kinds of predicted cis-elements. To investigate the potential effect of these cis-elements on TtdLRK10L-1 expression and function, two types of transgenic wheat lines were prepared, which expressed a GFP-tagged TtdLRK10L-1 protein (TtdLRK10L-1:GFP) from the cDNA or genomic DNA (gDNA) sequence of TtdLRK10L-1 under the native promoter. TtdLRK10L-1:GFP expression was up-regulated by the powdery mildew pathogen Blumeria graminis f. sp. tritici (Bgt) in both types of transgenic plants, with the scale of the elevation being much stronger in the gDNA lines. Both types of transgenic plants exhibited enhanced resistance to Bgt infection relative to wild type control. Notably, the Bgt defence activated in the gDNA lines was significantly stronger than that in the cDNA lines. Further analysis revealed that a putative MYB transcription factor binding site (MYB-BS, CAGTTA) located in TtdLRK10L-1 intron I was critical for the efficient expression and function of TtdLRK10L-1 in Bgt defence. This MYB-BS could also increase the activity of a superpromoter widely used in ectopic gene expression studies in plants. Together, our results deepen the understanding of the expression and functional characteristics of LRK10L-RLKs. TtdLRK10L-1 is likely useful for further dissecting the molecular processes underlying wheat defence against Bgt and for developing Bgt resistant wheat crops.


Asunto(s)
Resistencia a la Enfermedad , Triticum , Ascomicetos , Sitios de Unión , Resistencia a la Enfermedad/genética , Intrones/genética , Enfermedades de las Plantas/genética , Triticum/genética
18.
Plant Biotechnol J ; 19(5): 1038-1051, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33372381

RESUMEN

Heat stress (HS) causes substantial damages to worldwide crop production. As a cool season crop, wheat (Triticum aestivum) is sensitive to HS-induced damages. To support the genetic improvement of wheat HS tolerance (HST), we conducted fine mapping of TaHST1, a locus required for maintaining wheat vegetative and reproductive growth under elevated temperatures. TaHST1 was mapped to the distal terminus of 4AL chromosome arm using genetic populations derived from two BC6 F6 breeding lines showing tolerance (E6015-4T) or sensitivity (E6015-3S) to HS. The 4AL region carrying TaHST1 locus was approximately 0.949 Mbp and contained the last 19 high confidence genes of 4AL according to wheat reference genome sequence. Resequencing of E6015-3S and E6015-4T and haplotype analysis of 3087 worldwide wheat accessions revealed heightened deletion polymorphisms in the distal 0.949 Mbp region of 4AL, which was confirmed by the finding of frequent gene losses in this region in eight genome-sequenced hexaploid wheat cultivars. The great majority (86.36%) of the 3087 lines displayed different degrees of nucleotide sequence deletions, with only 13.64% of them resembling E6015-4T in this region. These deletions can impair the presence and/or function of TaHST1 and surrounding genes, thus rendering global wheat germplasm vulnerable to HS or other environmental adversities. Therefore, conscientious and urgent efforts are needed in global wheat breeding programmes to optimize the structure and function of 4AL distal terminus by ensuring the presence of TaHST1 and surrounding genes. The new information reported here will help to accelerate the ongoing global efforts in improving wheat HST.


Asunto(s)
Termotolerancia , Triticum , Brazo , Mapeo Cromosómico , Fitomejoramiento , Triticum/genética
19.
New Phytol ; 231(5): 1968-1983, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34096624

RESUMEN

Efficient phosphate (Pi) uptake and utilisation are essential for promoting crop yield. However, the underlying molecular mechanism is still poorly understood in complex crop species such as hexaploid wheat. Here we report that TaPHT1;9-4B and its transcriptional regulator TaMYB4-7D function in Pi acquisition, translocation and plant growth in bread wheat. TaPHT1;9-4B, a high-affinity Pi transporter highly upregulated in roots by Pi deficiency, was identified using quantitative proteomics. Disruption of TaPHT1;9-4B function by BSMV-VIGS or CRISPR editing impaired wheat tolerance to Pi deprivation, whereas transgenic expression of TaPHT1;9-4B in rice improved Pi uptake and plant growth. Using yeast-one-hybrid assay, we isolated TaMYB4-7D, a R2R3 MYB transcription factor that could activate TaPHT1;9-4B expression by binding to its promoter. Silencing TaMYB4-7D decreased TaPHT1;9-4B expression, Pi uptake and plant growth. Four promoter haplotypes were identified for TaPHT1;9-4B, with Hap3 showing significant positive associations with TaPHT1;9-4B transcript level, growth performance and phosphorus (P) content in wheat plants. A functional marker was therefore developed for tagging Hap3. Collectively, our data shed new light on the molecular mechanism controlling Pi acquisition and utilisation in bread wheat. TaPHT1;9-4B and TaMYB4-7D may aid further research towards the development of P efficient crop cultivars.


Asunto(s)
Pan , Triticum , Regulación de la Expresión Génica de las Plantas , Fosfatos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Triticum/genética , Triticum/metabolismo
20.
Catheter Cardiovasc Interv ; 97(2): E244-E248, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-32348003

RESUMEN

Worldwide Coronavirus Disease 2019 (COVID-19) epidemic makes the management of acute myocardial infarction (AMI) more complicated, effective treatment without further dissemination is thus quite challenging. Recently, we successfully treated three representative AMI cases, by sharing these detailed procedures, we summarized some important issues including patient screening, reperfusion strategy selecting, personnel/catheter lab protection principle, as well as operation tactics, which may lend precious experience on AMI treating during the ongoing COVID-19 pandemic situation.


Asunto(s)
COVID-19/complicaciones , Control de Infecciones/organización & administración , Infarto del Miocardio/diagnóstico , Infarto del Miocardio/terapia , Adulto , Anciano , Angioplastia Coronaria con Balón , COVID-19/diagnóstico , COVID-19/terapia , Angiografía Coronaria , Electrocardiografía , Humanos , Masculino , Persona de Mediana Edad , Infarto del Miocardio/complicaciones , Terapia Trombolítica , Ultrasonografía Intervencional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA